Graphs that Admit Right Angle Crossing Drawings

  • Karin Arikushi
  • Radoslav Fulek
  • Baláazs Keszegh
  • Filip Morić
  • Csaba D. Tóth
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6410)


We consider right angle crossing (RAC) drawings of graphs in which the edges are represented by polygonal arcs and any two edges can cross only at a right angle. We show that if a graph with n vertices admits a RAC drawing with at most 1 bend or 2 bends per edge, then the number of edges is at most 6.5n and 74.2n, respectively. This is a strengthening of a recent result of Didimo et al..


Rotation System Middle Segment Simple Polygon Interior Angle Graph Drawing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ackerman, E., Fulek, R., Tóth, C.D.: On the size of graphs that admit polyline drawings with few bends and crossing angles. In: Proc. 18th Sympos. on Graph Drawing. LNCS, Springer, Heidelberg (2010)Google Scholar
  2. 2.
    Ackerman, E., Tardos, G.: On the maximum number of edges in quasi-planar graphs. J. Combin. Theory Ser. A 114(3), 563–571 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ajtai, M., Chvátal, V., Newborn, M.M., Szemerédi, E.: Crossing-free subgraphs. In: Theory and practice of combinatorics. North-Holland Math. Stud., vol. 60, pp. 9–12. North-Holland, Amsterdam (1982)Google Scholar
  4. 4.
    Angelini, P., Cittadini, L., Di Battista, G., Didimo, W., Frati, F., Kaufmann, M., Symvonis, A.: On the perspectives opened by right angle crossing drawings. In: Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 21–32. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Appel, K., Haken, W.: The solution of the four-color-map problem. Sci. Amer. 237(4), 108–121 (1977)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Di Giacomo, E., Didimo, W., Liotta, G., Meijer, H.: Area, curve complexity, and crossing resolution of non-planar graph drawings. In: Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 15–20. Springer, Heidelberg (2010) (to appear)CrossRefGoogle Scholar
  7. 7.
    Didimo, W., Eades, P., Liotta, G.: Drawing graphs with right angle crossings. In: Proc. 11th WADS. LNCS, vol. 5664, pp. 206–217. Springer, Heidelberg (2009)Google Scholar
  8. 8.
    Dujmović, V., Gudmundsson, J., Morin, P., Wolle, T.: Notes on large angle crossing graphs. In: Proc. Computing: The Australian Theory Sympos.(CATS). CRPIT, ACS (2010) (to appear),
  9. 9.
    Hlinený, P.: Discharging technique in practice, Lecture text for Spring School on CombinatoricsGoogle Scholar
  10. 10.
    Huang, W.: Using eye tracking to investigate graph layout effects. In: 6th Asia-Pacific Sympos. Visualization (APVIS 2007), pp. 97–100 (2007)Google Scholar
  11. 11.
    Huang, W., Hong, S.-H., Eades, P.: Effects of crossing angles. In: Proc. IEEE Pacific Visualization Sympos., pp. 41–46 (2008)Google Scholar
  12. 12.
    Leighton, F.T.: Complexity issues in VLSI: optimal layouts for the shuffle-exchange graph and other networks. MIT Press, Cambridge (1983)Google Scholar
  13. 13.
    Pach, J., Radoičić, R., Tardos, G., Tóth, G.: Improving the crossing lemma by finding more crossings in sparse graphs. Discrete Comput. Geom. 36(4), 527–552 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Wernicke, P.: Über den kartographischen Vierfarbensatz. Math. Ann. 58(3), 413–426 (1904)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Karin Arikushi
    • 1
  • Radoslav Fulek
    • 2
  • Baláazs Keszegh
    • 2
    • 3
  • Filip Morić
    • 2
  • Csaba D. Tóth
    • 1
  1. 1.University of CalgaryCanada
  2. 2.Ecole Polytechnique Fédérale de LausanneSwitzerland
  3. 3.Alfréd Rényi Institute of MathematicsHungary

Personalised recommendations