On the Small Cycle Transversal of Planar Graphs

  • Ge Xia
  • Yong Zhang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6410)


We consider the problem of finding a k-edge transversal set that intersects all (simple) cycles of length at most s in a planar graph, where s ≥ 3 is a constant. This problem, referred to as Small Cycle Transversal, is known to be NP-complete. We present a polynomial-time algorithm that computes a kernel of size 36 s 3 k for Small Cycle Transversal. In order to achieve this kernel, we extend the region decomposition technique of Alber et al. [J. ACM, 2004 ] by considering a unique region decomposition that is defined by shortest paths. Our kernel size is an exponential improvement in terms of s over the kernel size obtained under the meta-kernelization framework by Bodlaender et al. [FOCS, 2009 ].


Parameterized Complexity Kernelization Planar Graphs Cycle Transversal 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alber, J., Fellows, M.R., Niedermeier, R.: Polynomial-time data reduction for dominating set. J. ACM 51(3), 363–384 (2004)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Alon, N., Bollobás, B., Krivelevich, M., Sudakov, B.: Maximum cuts and judicious partitions in graphs without short cycles. J. Comb. Theory Ser. B 88(2), 329–346 (2003)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bley, A., Grötschel, M., Wessly, R.: Design of broadband virtual private networks: Model and heuristics for the B-WiN. In: Robust Communication Networks: Interconnection and Survivability. DIMACS Series, vol. 53, pp. 1–16. AMS, Providence (1998)Google Scholar
  4. 4.
    Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S., Thilikos, D.M.: (Meta) kernelization. In: FOCS CoRR, abs/0904.0727 (2009)Google Scholar
  5. 5.
    Brügmann, D., Komusiewicz, C., Moser, H.: On generating triangle-free graphs. Electronic Notes in Discrete Mathematics 32, 51–58 (2009)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Downey, R., Fellows, M.: Parameterized Complexity. Springer, Heidelberg (1999)CrossRefMATHGoogle Scholar
  7. 7.
    Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization. SIGACT News 38(1), 31–45 (2007)CrossRefGoogle Scholar
  8. 8.
    Guo, J., Niedermeier, R.: Linear problem kernels for NP-hard problems on planar graphs. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 375–386. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Hoory, S.: The size of bipartite graphs with a given girth. J. Comb. Theory Ser. B 86(2), 215–220 (2002)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Kortsarz, G., Langberg, M., Nutov, Z.: Approximating maximum subgraphs without short cycles. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds.) APPROX and RANDOM 2008. LNCS, vol. 5171, pp. 118–131. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Krasikov, I., Noble, S.D.: Finding next-to-shortest paths in a graph. Inf. Process. Lett. 92(3), 117–119 (2004)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Pevzner, P., Tang, H., Tesler, G.: De novo repeat classification and fragment assembly. Genome Research 14(9), 1786–1796 (2004)CrossRefGoogle Scholar
  13. 13.
    Raman, V., Saurabh, S.: Short cycles make W-hard problems hard: FPT algorithms for W-hard problems in graphs with no short cycles. Algorithmica 52(2), 203–225 (2008)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Timmons, C.: Star coloring high girth planar graphs. The Electronic Journal of Combinatorics 15(R124) (2008)Google Scholar
  15. 15.
    Xia, G., Zhang, Y.: On the small cycle transversal of planar graphs. Technical Report, http://www.cs.lafayette.edu/~gexia/research/sctrans.pdf
  16. 16.
    Xia, G., Zhang, Y.: Kernelization for cycle transversal problems. In: AAIM, pp. 293–303 (2010)Google Scholar
  17. 17.
    Yannakakis, M.: Node-and edge-deletion NP-complete problems. In: STOC 1978, pp. 253–264 (1978)Google Scholar
  18. 18.
    Zhu, J., Bu, Y.: Equitable list colorings of planar graphs without short cycles. Theor. Comput. Sci. 407(1-3), 21–28 (2008)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ge Xia
    • 1
  • Yong Zhang
    • 2
  1. 1.Department of Computer ScienceLafayette CollegeEastonUSA
  2. 2.Department of Computer ScienceKutztown UniversityKutztownUSA

Personalised recommendations