Efficient Algorithms for Eulerian Extension

  • Frederic Dorn
  • Hannes Moser
  • Rolf Niedermeier
  • Mathias Weller
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6410)


Eulerian extension problems aim at making a given (directed) (multi-)graph Eulerian by adding a minimum-cost set of edges (arcs). These problems have natural applications in scheduling and routing and are closely related to the Chinese Postman and Rural Postman problems. Our main result is to show that the NP-hard Weighted Multigraph Eulerian Extension is fixed-parameter tractable with respect to the number k of extension edges (arcs). For an n-vertex multigraph, the corresponding running time amounts to O(4 k ·n 3). This implies a fixed-parameter tractability result for the “equivalent” Rural Postman problem. In addition, we present several polynomial-time algorithms for natural Eulerian extension problems.


Undirected Graph Dynamic Programming Algorithm Eulerian Graph Connected Digraph Connected Input 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice-Hall, Englewood Cliffs (1993)zbMATHGoogle Scholar
  3. 3.
    Boesch, F.T., Suffel, C., Tindell, R.: The spanning subgraphs of Eulerian graphs. J. Graph Theory 1(1), 79–84 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Burzyn, P., Bonomo, F., Durán, G.: NP-completeness results for edge modification problems. Discrete Appl. Math. 154(13), 1824–1844 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)CrossRefzbMATHGoogle Scholar
  6. 6.
    Eiselt, H.A., Gendreau, M., Laporte, G.: Arc routing problems part I: The chinese postman problem. Oper. Res. 43(2), 231–242 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Eiselt, H.A., Gendreau, M., Laporte, G.: Arc routing problems part II: The rural postman problem. Oper. Res. 43(3), 399–414 (1995)CrossRefzbMATHGoogle Scholar
  8. 8.
    Fellows, M.: Towards fully multivariate algorithmics: Some new results and directions in parameter ecology. In: Fiala, J., Kratochvíl, J., Miller, M. (eds.) IWOCA 2009. LNCS, vol. 5874, pp. 2–10. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  10. 10.
    Frederickson, G.N.: Approximation algorithms for some postman problems. J. ACM 26(3), 538–554 (1979)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Höhn, W., Jacobs, T., Megow, N.: On Eulerian extension problems and their application to sequencing problems. Technical Report 008, Combinatorial Optimization and Graph Algorithms, TU Berlin (2009)Google Scholar
  12. 12.
    Lenstra, J.K., Kan, A.H.G.R.: On general routing problems. Networks 6(3), 273–280 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Lesniak, L., Oellermann, O.R.: An Eulerian exposition. J. Graph Theory 10(3), 277–297 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Natanzon, A., Shamir, R., Sharan, R.: Complexity classification of some edge modification problems. Discrete Appl. Math. 113, 109–128 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)CrossRefzbMATHGoogle Scholar
  16. 16.
    Niedermeier, R.: Reflections on multivariate algorithmics and problem parameterization. In: Proc. 27th STACS, IBFI Dagstuhl, Germany. LIPIcs, vol. 5, pp. 17–32 (2010)Google Scholar
  17. 17.
    Orloff, C.S.: On general routing problems: Comments. Networks 6(3), 281–284 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Weller, M., Komusiewicz, C., Niedermeier, R., Uhlmann, J.: On making directed graphs transitive. In: Dehne, F., et al. (eds.) Proc. 11th WADS. LNCS, vol. 5664, pp. 542–553. Springer, Heidelberg (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Frederic Dorn
    • 1
  • Hannes Moser
    • 2
  • Rolf Niedermeier
    • 2
  • Mathias Weller
    • 2
  1. 1.Department of InformaticsUniversity of BergenNorway
  2. 2.Institut für InformatikFriedrich-Schiller-Universität JenaJenaGermany

Personalised recommendations