Skip to main content

Structural Basis of Extracellular Matrix Interactions with Matrix Metalloproteinases

  • Chapter
  • First Online:

Part of the book series: Biology of Extracellular Matrix ((BEM,volume 2))

Abstract

Interactions of the extracellular matrix (ECM) with domains of matrix metalloproteinases (MMPs) increase their proteolytic action upon matrix components. This occurs by multiple structural means. The activating interactions of a partner protein with pro-MMP-9 and of GAGs with pro-MMP-7 were reported. The interactions of fibrillar proteins with catalytic domains can traverse the breadth of the active site cleft and overflow into a neighboring exosite and perhaps beyond. Exosite interactions bear some resemblance to precedents in thrombin complexes. Basket-shaped surfaces on fibronectin II-like modules (inserted into the catalytic domains of MMP-2 and -9) appear to bind protein fibrils, may bend them, and certainly unwind triple helices. C-terminal hemopexin domains are joined loosely to the catalytic domain, which might facilitate positioning and movement across collagen triple helices. At least the first blade of the β-propeller of the hemopexin domain of MMP-1 seems to interact with the triple helix. Unifying themes among diverse interactions of MMPs with ECM polymers are (1) that two domains of the MMP often participate and (2) that the interaction guides the MMP to the site for proteolytic action.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CBD:

Collagen-binding domain composed of three FnII-like modules

CS:

Chondroitin sulfate

ECM:

Extracellular matrix

FnI:

Fibronectin type I

FnII:

Fibronectin type II

GAGs:

Glycosaminoglycans

HDX:

Hydrogen/deuterium exchange

HDXMS:

Hydrogen/deuterium exchange detected by mass spectrometry

HPX:

Hemopexin

HS:

Heparan sulfate

NMR:

Nuclear magnetic resonance

PAR:

Protease-activated receptor

SAXS:

Small angle X-ray scattering

THP:

Triple helical peptide

References

  • Ayala YM, Cantwell AM, Rose T, Bush LA, Arosio D, Di Cera E (2001) Molecular mapping of thrombin-receptor interactions. Proteins 45:107–116

    Article  PubMed  CAS  Google Scholar 

  • Bannikov GA, Karelina TV, Collier IE, Marmer Bl, Goldberg Gi (2002) Substrate binding of gelatinase b induces its enzymatic activity in the presence of intact propeptide. J Biol Chem 277:16022–16027

    Article  PubMed  CAS  Google Scholar 

  • Bella J, Eaton M, Brodsky B, Berman HM (1994) Crystal and molecular structure of a collagen-like peptide at 1.9 a resolution. Science 266:75–81

    Article  PubMed  CAS  Google Scholar 

  • Bertini I, Calderone V, Fragai M, Luchinat C, Maletta M, Yeo KJ (2006) Snapshots of the reaction mechanism of matrix metalloproteinases. Angew Chem Int Ed Engl 45:7952–7955

    Article  PubMed  CAS  Google Scholar 

  • Bertini I, Calderone V, Fragai M, Jaiswal R, Luchinat C, Melikian M, Mylonas E, Svergun Di (2008) Evidence of reciprocal reorientation of the catalytic and hemopexin-like domains of full-length mmp-12. J Am Chem Soc 130:7011–7021

    Article  PubMed  CAS  Google Scholar 

  • Bertini I, Fragai M, Luchinat C, Melikian M, Venturi C (2009) Characterisation of the MMP-12 -Elastin Adduct. Chemistry - A European Journal 15:7842–7845

    Article  CAS  Google Scholar 

  • Bertini I, Fragai M, Luchinat C, Melikian M, Mylonas E, Sarti N, Svergun Di (2009b) Interdomain flexibility in full-length matrix metalloproteinase-1 (mmp-1). J Biol Chem 284:12821–12828

    Article  PubMed  CAS  Google Scholar 

  • Bhaskaran R, Palmier Mo, Bagegni Na, Liang X, van Doren Sr (2007) Solution structure of inhibitor-free human metalloelastase (mmp-12) indicates an internal conformational adjustment. J Mol Biol 374:1333–1344

    Article  PubMed  CAS  Google Scholar 

  • Bhaskaran R, Palmier Mo, Lauer-Fields Jl, Fields Gb, Van Doren Sr (2008) Mmp-12 catalytic domain recognizes triple helical peptide models of collagen v with exosites and high activity. J Biol Chem 283:21779–21788

    Article  PubMed  CAS  Google Scholar 

  • Bode W (1995) A helping hand for collagenases: the haemopexin-like domain. Structure 3:527–530

    Article  PubMed  CAS  Google Scholar 

  • Bode W (2006) Structure and interaction modes of thrombin. Blood Cells Mol Dis 36:122–130

    Article  PubMed  CAS  Google Scholar 

  • Bode W, Reinemer P, Huber R, Kleine T, Schnierer S, Tschesche H (1994) The X-ray crystal structure of the catalytic domain of human neutrophil collagenase inhibited by a substrate analogue reveals the essentials for catalysis and specificity. Embo J 13:1263–1269

    PubMed  CAS  Google Scholar 

  • Briknarova K, Grishaev A, Banyai L, Tordai H, Patthy L, Llinas M (1999) The second type ii module from human matrix metalloproteinase 2: structure, function and dynamics. Structure 7:1235–1245

    Article  PubMed  CAS  Google Scholar 

  • Briknarova K, Gehrmann M, Banyai L, Tordai H, Patthy L, Llinas M (2001) Gelatin-binding region of human matrix metalloproteinase-2: solution structure, dynamics, and function of the col-23 two-domain construct. J Biol Chem 276:27613–27621

    Article  PubMed  CAS  Google Scholar 

  • Busiek Df, Ross Fp, Mcdonnell S, Murphy G, Matrisian Lm, Welgus Hg (1992) The matrix metalloprotease matrilysin (pump) is expressed in developing human mononuclear phagocytes. J Biol Chem 267:9087–9092

    PubMed  CAS  Google Scholar 

  • Capila I, Linhardt Rj (2002) Heparin-protein interactions. Angew Chem Int Ed Engl 41:391–412

    Article  PubMed  Google Scholar 

  • Chung L, Shimokawa K, Dinakarpandian D, Grams F, Fields Gb, Nagase H (2000) Identification of the (183)rwtnnfrey(191) region as a critical segment of matrix metalloproteinase 1 for the expression of collagenolytic activity. J Biol Chem 275:29610–29617

    Article  PubMed  CAS  Google Scholar 

  • Chung L, Dinakarpandian D, Yoshida N, Lauer-Fields Jl, Fields Gb, Visse R, Nagase H (2004) Collagenase unwinds triple-helical collagen prior to peptide bond hydrolysis. Embo J 23:3020–3030

    Article  PubMed  CAS  Google Scholar 

  • Clark Im, Cawston Te (1989) Fragments of human fibroblast collagenase. Purification and characterization. Biochem J 263:201–206

    PubMed  CAS  Google Scholar 

  • Collier Ie, Krasnov Pa, Strongin Ay, Birkedal-Hansen H, Goldberg Gi (1992) Alanine scanning mutagenesis and functional analysis of the fibronectin-like collagen-binding domain from human 92-kda type iv collagenase. J Biol Chem 267:6776–6781

    PubMed  CAS  Google Scholar 

  • Crabbe T, Ioannou C, Docherty Aj (1993) Human progelatinase a can be activated by autolysis at a rate that is concentration-dependent and enhanced by heparin bound to the c-terminal domain. Eur J Biochem 218:431–438

    Article  PubMed  CAS  Google Scholar 

  • Crabbe T, O’connell Jp, Smith Bj, Docherty Aj (1994) Reciprocated matrix metalloproteinase activation: a process performed by interstitial collagenase and progelatinase a. Biochemistry 33:14419–14425

    Article  PubMed  CAS  Google Scholar 

  • Curci JA, Liao S, Huffman MD, Shapiro SD, Thompson RW (1998) Expression and localization of macrophage elastase (matrix metalloproteinase-12) in abdominal aortic aneurysms. J Clin Invest 102:1900–1910

    Article  PubMed  CAS  Google Scholar 

  • Dementiev A, Petitou M, Herbert Jm, Gettins Pg (2004) The ternary complex of antithrombin-anhydrothrombin-heparin reveals the basis of inhibitor specificity. Nat Struct Mol Biol 11:863–867

    Article  PubMed  CAS  Google Scholar 

  • Erat Mc, Slatter Da, Lowe Ed, Millard Cj, Farndale Rw, Campbell Id, Vakonakis I (2009) Identification and structural analysis of type i collagen sites in complex with fibronectin fragments. Proc Natl Acad Sci U S A 106:4195–4200

    Article  PubMed  CAS  Google Scholar 

  • Fu Jy, Lyga A, Shi H, Blue Ml, Dixon B, Chen D (2001) Cloning, expression, purification, and characterization of rat mmp-12. Protein Expr Purif 21:268–274

    Article  PubMed  CAS  Google Scholar 

  • Gehrmann Ml, Douglas Jt, Banyai L, Tordai H, Patthy L, Llinas M (2004) Modular autonomy, ligand specificity, and functional cooperativity of the three in-tandem fibronectin type ii repeats from human matrix metalloproteinase 2. J Biol Chem 279:46921–46929

    Article  PubMed  CAS  Google Scholar 

  • Gioia M, Monaco S, Van Den Steen Pe, Sbardella D, Grasso G, Marini S, Overall Cm, Opdenakker G, Coletta M (2009) The collagen binding domain of gelatinase a modulates degradation of collagen iv by gelatinase b. J Mol Biol 386:419–434

    Article  PubMed  CAS  Google Scholar 

  • Gooley Pr, Johnson Ba, Marcy Ai, Cuca Gc, Salowe Sp, Hagmann Wk, Esser Ck, Springer Jp (1993) Secondary structure and zinc ligation of human recombinant short-form stromelysin by multidimensional nmr. Biochemistry 32:13098–13108

    Article  PubMed  CAS  Google Scholar 

  • Gooley Pr, O’connell Jf, Marcy Ai, Cuca Gc, Salowe Sp, Bush Bl, Hermes Jd, Esser Ck, Hagmann Wk, Springer Jp, Johnson Ba (1994) The nmr structure of the inhibited catalytic domain of human stromelysin-1. Nat Struct Biol 1:111–118

    Article  PubMed  CAS  Google Scholar 

  • Gronski Tj, Martin Rl Jr, Kobayashi Dk, Walsh Bc, Holman Mc, Huber M, Van Wart He, Shapiro Sd (1997) Hydrolysis of a broad spectrum of extracellular matrix proteins by human macrophage elastase. J Biol Chem 272:12189–12194

    Article  PubMed  CAS  Google Scholar 

  • Imai K, Yokohama Y, Nakanishi I, Ohuchi E, Fujii Y, Nakai N, Okada Y (1995) Matrix metalloproteinase 7 (matrilysin) from human rectal carcinoma cells. Activation of the precursor, interaction with other matrix metalloproteinases and enzymic properties. J Biol Chem 270:6691–6697

    Article  PubMed  CAS  Google Scholar 

  • Iyer S, Visse R, Nagase H, Acharya Kr (2006) Crystal structure of an active form of human mmp-1. J Mol Biol 362:78–88

    Article  PubMed  CAS  Google Scholar 

  • Knauper V, Osthues A, Declerck Ya, Langley Ke, Blaser J, Tschesche H (1993) Fragmentation of human polymorphonuclear-leucocyte collagenase. Biochem J 291(Pt 3):847–854

    PubMed  Google Scholar 

  • Knauper V, Cowell S, Smith B, Lopez-Otin C, O’shea M, Morris H, Zardi L, Murphy G (1997) The role of the c-terminal domain of human collagenase-3 (mmp-13) in the activation of procollagenase-3, substrate specificity, and tissue inhibitor of metalloproteinase interaction. J Biol Chem 272:7608–7616

    Article  PubMed  CAS  Google Scholar 

  • Lang R, Kocourek A, Braun M, Tschesche H, Huber R, Bode W, Maskos K (2001) Substrate specificity determinants of human macrophage elastase (mmp- 12) based on the 1.1 a crystal structure. J Mol Biol 312:731–742

    Article  PubMed  CAS  Google Scholar 

  • Lauer-Fields Jl, Whitehead Jk, Li S, Hammer Rp, Brew K, Fields Gb (2008) Selective modulation of matrix metalloproteinase 9 (mmp-9) functions via exosite inhibition. J Biol Chem 283:20087–20095

    Article  PubMed  CAS  Google Scholar 

  • Lauer-Fields Jl, Chalmers M, Busby Sa, Minond D, Griffin Pr, Fields Gb (2009) Identification of specific hemopexin-like domain residues that facilitate matrix metalloproteinase collagenolytic activity. J Biol Chem 284:24017–24024

    Article  PubMed  CAS  Google Scholar 

  • Li J, Brick P, O’hare Mc, Skarzynski T, Lloyd Lf, Curry Va, Clark Im, Bigg Hf, Hazleman Bl, Cawston Te, Blow Dm (1995) Structure of full-length porcine synovial collagenase reveals a c-terminal domain containing a calcium-linked, four-bladed ß-propeller. Structure 3:541–549

    Article  PubMed  CAS  Google Scholar 

  • Li W, Johnson Dj, Esmon Ct, Huntington Ja (2004) Structure of the antithrombin-thrombin-heparin ternary complex reveals the antithrombotic mechanism of heparin. Nat Struct Mol Biol 11:857–862

    Article  PubMed  CAS  Google Scholar 

  • Li W, Adams Te, Nangalia J, Esmon Ct, Huntington Ja (2008a) Molecular basis of thrombin recognition by protein c inhibitor revealed by the 1.6-a structure of the heparin-bridged complex. Proc Natl Acad Sci U S A 105:4661–4666

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Kienetz M, Cherney Mm, James Mn, Bromme D (2008b) The crystal and molecular structures of a cathepsin k: chondroitin sulfate complex. J Mol Biol 383:78–91

    Article  PubMed  CAS  Google Scholar 

  • Liang X, Arunima A, Zhao Y, Bhaskaran R, Shende A, Byrne Ts, Fleeks J, Palmier Mo, Doren Van Sr (2010) Apparent tradeoff of higher activity in mmp-12 for enhanced stability and flexibility in mmp-3. Biophys J 99:273–283

    Article  PubMed  CAS  Google Scholar 

  • Maskos K (2005) Crystal structures of mmps in complex with physiological and pharmacological inhibitors. Biochimie 87:249–263

    Article  PubMed  CAS  Google Scholar 

  • Minond D, Lauer-Fields Jl, Cudic M, Overall Cm, Pei D, Brew K, Visse R, Nagase H, Fields Gb (2006) The roles of substrate thermal stability and p2 and p1′ subsite identity on matrix metalloproteinase triple-helical peptidase activity and collagen specificity. J Biol Chem 281:38302–38313

    Article  PubMed  CAS  Google Scholar 

  • Monaco S, Gioia M, Rodriguez J, Fasciglione Gf, Di Pierro D, Lupidi G, Krippahl L, Krippahl L, Marini S, Coletta M (2007) Modulation of the proteolytic activity of matrix metalloproteinase-2 (gelatinase a) on fibrinogen. Biochem J 402:503–513

    Article  PubMed  CAS  Google Scholar 

  • Morgunova E, Tuuttila A, Bergmann U, Isupov M, Lindqvist Y, Schneider G, Tryggvason K (1999) Structure of human pro-matrix metalloproteinase-2: activation mechanism revealed. Science 284:1667–1670

    Article  PubMed  CAS  Google Scholar 

  • Murphy G, Allan Ja, Willenbrock F, Cockett Mi, O’connell Jp, Docherty Aj (1992) The role of the c-terminal domain in collagenase and stromelysin specificity. J Biol Chem 267:9612–9618

    PubMed  CAS  Google Scholar 

  • O’farrell Tj, Pourmotabbed T (1998) The fibronectin-like domain is required for the type v and xi collagenolytic activity of gelatinase b. Arch Biochem Biophys 354:24–30

    Article  PubMed  Google Scholar 

  • Orgel Jp, Irving Tc, Miller A, Wess Tj (2006) Microfibrillar structure of type i collagen in situ. Proc Natl Acad Sci USA 103:9001–9005

    Article  PubMed  CAS  Google Scholar 

  • Overall Cm (2001) Matrix metalloproteinase substrate binding domains, modules and exosites. Overview and experimental strategies. Methods Mol Biol 151:79–120

    PubMed  CAS  Google Scholar 

  • Overall Cm (2002) Molecular determinants of metalloproteinase substrate specificity: Matrix metalloproteinase substrate binding domains, modules, and exosites. Mol Biotechnol 22:51–86

    Article  PubMed  CAS  Google Scholar 

  • Overall Cm, Butler Gs (2007) Protease yoga: extreme flexibility of a matrix metalloproteinase. Structure 15:1159–1161

    Article  PubMed  CAS  Google Scholar 

  • Palmier Mo, Fulcher Yg, Bhaskaran R, Duong Vq, Fields Gb, Van Doren Sr (2010) Nmr and bioinformatics discovery of exosites that tune metalloelastase specificity for solubilized elastin and collagen triple helices. J Biol Chem 285(40):30918–30930

    Article  PubMed  CAS  Google Scholar 

  • Patterson Ml, Atkinson Sj, Knauper V, Murphy G (2001) Specific collagenolysis by gelatinase a, mmp-2, is determined by the hemopexin domain and not the fibronectin-like domain. FEBS Lett 503:158–162

    Article  PubMed  CAS  Google Scholar 

  • Pelman Gr, Morrison Cj, Overall Cm (2005) Pivotal molecular determinants of peptidic and collagen triple helicase activities reside in the s3′ subsite of matrix metalloproteinase 8 (mmp-8): The role of hydrogen bonding potential of asn188 and tyr189 and the connecting cis bond. J Biol Chem 280:2370–2377

    Article  PubMed  CAS  Google Scholar 

  • Perumal S, Antipova O, Orgel Jp (2008) Collagen fibril architecture, domain organization, and triple-helical conformation govern its proteolysis. Proc Natl Acad Sci USA 105:2824–2829

    Article  PubMed  CAS  Google Scholar 

  • Ra Hj, Harju-Baker S, Zhang F, Linhardt Rj, Wilson Cl, Parks Wc (2009) Control of promatrilysin (mmp7) activation and substrate-specific activity by sulfated glycosaminoglycans. J Biol Chem 284:27924–27932

    Article  PubMed  CAS  Google Scholar 

  • Richardson Jl, Kroger B, Hoeffken W, Sadler Je, Pereira P, Huber R, Bode W, Fuentes-Prior P (2000) Crystal structure of the human alpha-thrombin-haemadin complex: an exosite ii-binding inhibitor. EMBO J 19:5650–5660

    Article  PubMed  CAS  Google Scholar 

  • Rosenblum G, Van Den Steen Pe, Cohen Sr, Grossmann Jg, Frenkel J, Sertchook R, Slack N, Strange Rw, Opdenakker G, Sagi I (2007) Insights into the structure and domain flexibility of full-length pro-matrix metalloproteinase-9/gelatinase b. Structure 15:1227–1236

    Article  PubMed  CAS  Google Scholar 

  • Saffarian S, Collier Ie, Marmer Bl, Elson El, Goldberg G (2004) Interstitial collagenase is a Brownian ratchet driven by proteolysis of collagen. Science 306:108–111

    Article  PubMed  CAS  Google Scholar 

  • Schilling O, Overall Cm (2008) Proteome-derived, database-searchable peptide libraries for identifying protease cleavage sites. Nat Biotechnol 26:685–694

    Article  PubMed  CAS  Google Scholar 

  • Schwede T, Kopp J, Guex N, Peitsch Nc (2003) Swiss-model: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385

    Article  PubMed  CAS  Google Scholar 

  • Shapiro Sd, Kobayashi Dk, Ley Tj (1993) Cloning and characterization of a unique elastolytic metalloproteinase produced by human alveolar macrophages. J Biol Chem 268:23824–23829

    PubMed  CAS  Google Scholar 

  • Shipley Jm, Doyle Ga, Fliszar Cj, Ye Qz, Johnson Ll, Shapiro Sd, Welgus Hg, Senior Rm (1996) The structural basis for the elastolytic activity of the 92-kda and 72- kda gelatinases. Role of the fibronectin type ii-like repeats. J Biol Chem 271:4335–4341

    Article  PubMed  CAS  Google Scholar 

  • Steffensen B, Wallon Um, Overall Cm (1995) Extracellular matrix binding properties of recombinant fibronectin type ii-like modules of human 72-kda gelatinase/type iv collagenase. High affinity binding to native type i collagen but not native type iv collagen. J Biol Chem 270:11555–11566

    Article  PubMed  CAS  Google Scholar 

  • Taddese S, Weiss As, Neubert Rh, Schmelzer Ce (2008) Mapping of macrophage elastase cleavage sites in insoluble human skin elastin. Matrix Biol 27:420–428

    Article  PubMed  CAS  Google Scholar 

  • Taddese S, Jung Mc, Ihling C, Heinz A, Neubert Rh, Schmelzer Ce (2010) Mmp-12 catalytic domain recognizes and cleaves at multiple sites in human skin collagen type i and type iii. Biochim Biophys Acta 1804:731–739

    PubMed  CAS  Google Scholar 

  • Tam Em, Moore Tr, Butler Gs, Overall Cm (2004) Characterization of the distinct collagen binding, helicase and cleavage mechanisms of matrix metalloproteinase 2 and 14 (gelatinase a and mt1-mmp): The differential roles of the mmp hemopexin c domains and the mmp-2 fibronectin type ii modules in collagen triple helicase activities. J Biol Chem 279:43336–43344

    Article  PubMed  CAS  Google Scholar 

  • Van Doren Sr, Kurochkin Av, Ye Qz, Johnson Ll, Hupe Dl, Zuiderweg Erp (1993) Assignments for the main-chain nuclear magnetic resonances and delineation of the secondary structure of the catalytic domain of human stromelysin-1 as obtained from triple-resonance 3d nmr experiments. Biochemistry 32:13109–13122

    Article  PubMed  Google Scholar 

  • Van Doren Sr, Kurochkin Av, Hu Wd, Ye Qz, Johnson Ll, Hupe Dl, Zuiderweg Erp (1995) Solution structure of the catalytic domain of human stromelysin complexed with a hydrophobic inhibitor. Protein Sci 4:2487–2498

    Article  PubMed  Google Scholar 

  • Xu X, Mikhailova M, Ilangovan U, Chen Z, Yu A, Pal S, Hinck Ap, Steffensen B (2009) Nuclear magnetic resonance mapping and functional confirmation of the collagen binding sites of matrix metalloproteinase-2. Biochemistry 48:5822–5831

    Article  PubMed  CAS  Google Scholar 

  • Yu Wh, Woessner Jf Jr (2000) Heparan sulfate proteoglycans as extracellular docking molecules for matrilysin (matrix metalloproteinase 7). J Biol Chem 275:4183–4191

    Article  PubMed  CAS  Google Scholar 

  • Yu Wh, Woessner Jf Jr (2001) Heparin-enhanced zymographic detection of matrilysin and collagenases. Anal Biochem 293:38–42

    Article  PubMed  CAS  Google Scholar 

  • Yu Wh, Woessner Jf Jr, Mcneish Jd, Stamenkovic I (2002) Cd44 anchors the assembly of matrilysin/mmp-7 with heparin-binding epidermal growth factor precursor and erbb4 and regulates female reproductive organ remodeling. Genes Dev 16:307–323

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author is grateful for the grant support of the NIH (GM57289 to SVD and CA98799 to GB Fields) and American Heart Association (0855714G to SVD) sponsoring his research into MMP interactions with matrix molecules.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven R. Van Doren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Van Doren, S.R. (2011). Structural Basis of Extracellular Matrix Interactions with Matrix Metalloproteinases. In: Parks, W., Mecham, R. (eds) Extracellular Matrix Degradation. Biology of Extracellular Matrix, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16861-1_6

Download citation

Publish with us

Policies and ethics