On the Best Evolutionary Wavelet Based Filter to Compress a Specific Signal

  • Oscar Herrera Alcántara
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6438)


This work presents an application of a genetic algorithm in the design of digital filters used to implement the discrete wavelet transform. The best compression of a transformed signal is achieved when its power is described by the smallest number of transformation coefficients. The individuals of the genetic algorithm aim to reach this target, at the same time that they reduce the error of the reconstructed signal. In the experiments we worked with grayscale images, and we compared the performance of evolutionary and Daubechies filters. Experimental results show the feasibility and convenience of finding custom wavelets for each image, and support the idea that there is a suitable wavelet to compress any given signal.


Wavelet Transform Digital Filtering Data Compression Genetic Algorithm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Joseph, O., Chapa, M.: Algorithms for designing wavelets to match a specified signal. IEEE Transactions on signal processing 48(12), 3395–3406 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Golden, S.: Identifying Multiscale Statistical Models Using the Wavelet Transform, S. M. thesis. Dept. of Elect. Eng. and Comput. Sci., Mass. Inst. of Tech, Cambridge, MA (1988)Google Scholar
  3. 3.
    Herrera, O.: Lossless compression using metasymbols, Ph. D. thesis. Center for Computer Research, National Polytechnic Institute, Mexico (2005)Google Scholar
  4. 4.
    Daubechies, I.: Ten lectures on wavelets. SIAM, Philadelphia (1992)CrossRefzbMATHGoogle Scholar
  5. 5.
    Sheng, Y.: Wavelet transform in the transforms and applications handbook. In: Poularikas, H.D. (ed.) The Electrical Engineering Handbook Series, pp. 747–827. MCRC PressGoogle Scholar
  6. 6.
    Burrus, C., Gopinath, R., Guo, H.: Introduction to wavelets and wavelet transform, a primer. Prentice Hall, Upper Saddle River (1998)Google Scholar
  7. 7.
    Hehong, Z., Tewfik, A.: Parametrization of compactly supported orthonormal wavelets. IEEE Transactions on Signal Processing 41(3), 1428–1431 (1993)CrossRefzbMATHGoogle Scholar
  8. 8.
    Daubechies, I.: Orthonormal bases of compactly supported wavelets. Commun. on Pure and Applied Math. 41(1), 909–996 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Tewfik, A., Sinha, D., Jorgensen, P.: On the optimal choice of a wavelet for signal representation. IEEE Transactions on information theory 38(2), 747–765 (1992)CrossRefzbMATHGoogle Scholar
  10. 10.
    Walker, J.: A primer on wavelets and their scientific applications, 2nd edn. Chapman Hall/CRC, Taylor and Francis Group (2008)Google Scholar
  11. 11.
    Kuri, A.: A Comprehensive Approcah to Genetic Algorithms in Optimization and Learning. National Polytechnic Institute, Mexico (1999)Google Scholar
  12. 12.
    Mallat, S.G.: Multiresolution approximations and wavelet orthonormal bases of \({\mathbb{L}^{2}}\mathbb{R}\). Trans. Amer. Math. Soc. 315(1), 69–87 (1089)Google Scholar
  13. 13.
    Mallat, S.G.: A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. on Patt. Anal. Mach. Intell. 11(7), 674–693 (1989)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Oscar Herrera Alcántara
    • 1
  1. 1.Departamento de SistemasUniversidad Autónoma Metropolitana AzcapotzalcoMéxico, D.F.

Personalised recommendations