Advertisement

Reducing the Search Space in Evolutive Design of ARIMA and ANN Models for Time Series Prediction

  • Juan J. Flores
  • Hector Rodriguez
  • Mario Graff
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6438)

Abstract

Evolutionary design of time series predictors is a field that has been explored for several years now. The levels of design vary in the many works reported in the field. We decided to perform a complete design and training of ARIMA models using Evolutionary Computation. This decision leads to high dimensional search spaces, whose size increases exponentially with dimensionality. In order to reduce the size of those search spaces we propose a method that performs a preliminary statistical analysis of the inputs involved in the model design and their impact on quality of results; as a result of the statistical analysis, we eliminate inputs that are irrelevant for the prediction task. The proposed methodology proves to be effective and efficient, given that the results increase in accuracy and the computing time required to produce the predictors decreases.

Keywords

Evolutionary Computation Artificial Neural Networks ARIMA models Time Series Forecasting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cadenas, E., Rivera, W.: Wind speed forecasting in the south coast of Oaxaca, Mexico. Renewable Energy 32(12), 2116–2128 (2007)CrossRefGoogle Scholar
  2. 2.
    Cadenas, E., Rivera, W.: Short term wind speed forecasting in La Venta, Oaxaca, using artificial neural networks. Renewable Energy 34, 274–278 (2009)CrossRefGoogle Scholar
  3. 3.
    Chen, Y., Yang, B., Dong, J., Abraham, A.: Time-series forecasting using flexible neural tree model. Information Sciences 174, 219–2352 (2005)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chorng-Shyong, O., Jih-Jeng, H., Gwo-Hshiung, T.: Model identification of ARIMA family using genetic algorithms. Applied Mathematics and Computation 164(3), 885–912 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression. Annals of Statistics 32(2), 407–499 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Elliot, D., Schwartz, M., Scott, G., Haymes, S., George, R.: Wind energy resource atlas of Oaxaca. NREL/TP, 500-34519 (2003)Google Scholar
  7. 7.
    Flores, J.J., Graff, M., Cadena, E.: Wind prediction using genetic programming and gene expression programming. In: Techniques and Methodologies for Modelling and Simulation of Systems, Lyon France - Mexico, AMSE, International Association for Advanced of Modelling and Simulation, pp. 34–40 (2005) ISBN:970-703-323-1Google Scholar
  8. 8.
    Flores, J.J., Loaeza, R., Rodriguez, H., Cadenas, E.: Wind speed forecasting using a hybrid neural-evolutive approach. In: Aguirre, A.H., Borja, R.M., García, C.A.R. (eds.) MICAI 2009. LNCS, vol. 5845, pp. 600–609. Springer, Heidelberg (2009)Google Scholar
  9. 9.
    Gelper, S., Croux, C.: Least angle regression for time series forecasting with many predictors. Open Access publications from Katholieke Universiteit Leuven urn:hdl:123456789/164224, Katholieke Universiteit Leuven (2008)Google Scholar
  10. 10.
    Ghiassi, H., Saidane, M., Zimbra, D.K.: A dynamic artificial neural network model for forecasting time series events. International Jounal of Forecasting 21, 341–362 (2005)CrossRefGoogle Scholar
  11. 11.
    Haykin, S.: Neural Networks a comprehensive foundation. Prentice-Hall, Englewood Cliffs (1999)zbMATHGoogle Scholar
  12. 12.
    Jaramillo, O.A., Borja, M.A.: Wind speed analysis in La Ventosa Mexico: a bimodal probability distribution case. Renewable Energy 29, 1613–1630 (2004)CrossRefGoogle Scholar
  13. 13.
    Langdon, W.B., Buxton, B.F.: Genetic programming for mining DNA chip data from cancer patients. Genetic Programming and Evolvable Machines 5(3), 251–257 (2004)CrossRefGoogle Scholar
  14. 14.
    Langdon, W.B., Harrison, A.P.: GP on SPMD parallel graphics hardware for mega bioinformatics data mining. Soft Comput. 12(12), 1169–1183 (2008)CrossRefGoogle Scholar
  15. 15.
    Makridakis, S., Whellwright, S.C., Hyndamn, R.J.: Forecasting Methods and Applications, 3rd edn. John Wiley & Sons, Inc., Chichester (1992)Google Scholar
  16. 16.
    Minerva, T., Poli, I.: Building ARMA models with genetic algorithms. In: Boers, E.J.W., Gottlieb, J., Lanzi, P.L., Smith, R.E., Cagnoni, S., Hart, E., Raidl, G.R., Tijink, H. (eds.) EvoIASP 2001, EvoWorkshops 2001, EvoFlight 2001, EvoSTIM 2001, EvoCOP 2001, and EvoLearn 2001. LNCS, vol. 2037, pp. 335–343. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  17. 17.
    Price, G.R.: Selection and covariance. Nature 227, 520–521 (1970)CrossRefGoogle Scholar
  18. 18.
    Riahy, G.H., Abedi, M.: Short term wind speed forcasting for wind turbine applications using linear prediction method. Renewable Energy 33, 35–41 (2008)CrossRefGoogle Scholar
  19. 19.
    Steenburgh, W., Schultz, D., Colle, B.: The structure and evolution of gap outflow over the Gulf of Tehuantepec. Monthly Weather review 91 (1998)Google Scholar
  20. 20.
    Verleysen, M., François, D.: The curse of dimensionality in data mining and time series prediction. In: Cabestany, J., Prieto, A.G., Sandoval, F. (eds.) IWANN 2005. LNCS, vol. 3512, pp. 758–770. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Wang, H., Zhao, W.: Arima model estimated by particle swarm optimization algorithm for consumer price index forecasting. In: Deng, H., Wang, L., Wang, F.L., Lei, J. (eds.) AICI 2009. LNCS, vol. 5855, pp. 48–58. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  22. 22.
    Zhang, G.P.: Time series forecasting using a hybrid arima and neural network model. Neurocomputing 50, 159–175 (2003)CrossRefzbMATHGoogle Scholar
  23. 23.
    Zhang, G.P.: A neural network ensemble method with jittered training data for time series forecasting. Information Sciences 177, 5329–5346 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Juan J. Flores
    • 1
  • Hector Rodriguez
    • 1
  • Mario Graff
    • 2
  1. 1.Division de Estudios de Postgrado, Facultad de Ingenieria ElectricaUniversidad Michoacana de San Nicolas de HidalgoMexico
  2. 2.School of Computer Science and Electronic EngineeringUniversity of EssexUK

Personalised recommendations