Skip to main content

Cellular-Array Implementations of Bio-inspired Self-healing Systems: State of the Art and Future Perspectives

  • Conference paper

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 78))

Abstract

This survey aims to give an overview of bio-inspired systems which employ cellular arrays in order to achieve redundancy and self-healing capabilities. In spite of numerous publications in this particular field, only a few fundamentally different architectures exist. After a general introduction to research concerning bio-inspired systems, we describe these fundamental system types and evaluate their advantages and disadvantages. In addition, we identify areas of interest for future research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boesen, M., Madsen, J.: eDNA: A Bio-Inspired Reconfigurable Hardware Cell Architecture Supporting Self-organisation and Self-healing. In: 2009 NASA/ESA Conference on Adaptive Hardware and Systems, pp. 147–154 (2009)

    Google Scholar 

  2. Bradley, D., Tyrrell, A.: Hardware fault tolerance: An immunological solution. In: IEEE International Conference on Systems, Man, and Cybernetics, vol. 1, pp. 107–112. Citeseer (2000)

    Google Scholar 

  3. Bradley, D., Tyrrell, A.: The architecture for a hardware immune system, p. 0193 (2001)

    Google Scholar 

  4. Canham, R., Tyrrell, A.: A learning, multi-layered, hardware artificial immune system implemented upon an embryonic array. In: Tyrrell, A.M., Haddow, P.C., Torresen, J. (eds.) ICES 2003. LNCS, vol. 2606, pp. 174–185. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Canham, R., Tyrrell, A.: An embryonic array with improved efficiency and fault tolerance. In: Proceedings of the 2003 NASA/DoD Conference on Evolvable Hardware EH 2003, p. 275. IEEE Computer Society, Washington (2003)

    Google Scholar 

  6. Canham, R., Tyrrell, A.: A hardware artificial immune system and embryonic array for fault tolerant systems. Genetic Programming and Evolvable Machines 4(4), 359–382 (2003)

    Article  Google Scholar 

  7. Dasgupta, D., Ji, Z., Gonzalez, F., et al.: Artificial immune system (AIS) research in the last five years. In: Proceedings of The 2003 Congress on Evolutionary Computation (CEC 2003), pp. 123–130 (2003)

    Google Scholar 

  8. Forrest, S., Perelson, A., Allen, L., Cherukuri, R.: Self-nonself discrimination in a computer. In: Proceedings of IEEE Computer Society Symposium on Research in Security and Privacy, pp. 202–212 (1994)

    Google Scholar 

  9. Gericota, M., Alves, G., Ferreira, J.: A self-healing real-time system based on run-time self-reconfiguration. In: 10th IEEE Conference on Emerging Technologies and Factory Automation, ETFA 2005, vol. 1 (2005)

    Google Scholar 

  10. Ghosh, D., Sharman, R., Raghav Rao, H., Upadhyaya, S.: Self-healing systems–survey and synthesis. Decision Support Systems 42(4), 2164–2185 (2007)

    Article  Google Scholar 

  11. Greensted, A., Tyrrell, A.: An endocrinologic-inspired hardware implementation of a multicellular system. In: NASA/DoD Conference on Evolvable Hardware, Seattle, USA (2004)

    Google Scholar 

  12. Greensted, A., Tyrrell, A.: Implementation results for a fault-tolerant multicellular architecture inspired by endocrine communication. In: Proceedings of NASA/DoD Conference on Evolvable Hardware, pp. 253–261 (2005)

    Google Scholar 

  13. Hammerstrom, D.: A survey of bio-inspired and other alternative architectures. In: Nanotechnology. Information Technology II, vol. 4 (2008)

    Google Scholar 

  14. Lala, P., Kumar, B.: An architecture for self-healing digital systems. In: Proceedings of the Eighth IEEE International On-Line Testing Workshop, pp. 3–7 (2002)

    Google Scholar 

  15. Lala, P., Kumar, B.: Human immune system inspired architecture for self-healing digital systems. In: Proceedings of International Symposium on Quality Electronic Design, pp. 292–297 (2002)

    Google Scholar 

  16. Macias, N., Athanas, P.: Application of Self-Configurability for Autonomous, Highly-Localized Self-Regulation. In: Second NASA/ESA Conference on Adaptive Hardware and Systems, AHS 2007, pp. 397–404 (2007)

    Google Scholar 

  17. Mange, D., Goeke, M., Madon, D., Stauffer, A., Tempesti, G., Durand, S.: Embryonics: A new family of coarse-grained field-programmable gate array with self-repair and self-reproducing properties. In: Towards evolvable hardware, pp. 197–220 (1996)

    Google Scholar 

  18. Mange, D., Sanchez, E., Stauffer, A., Tempesti, G., Marchal, P., Piguet, C.: Embryonics: a new methodology for designing field-programmable gatearrays with self-repair and self-replicating properties. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 6(3), 387–399 (1998)

    Article  Google Scholar 

  19. Mange, D., Sipper, M., Stauffer, A., Tempesti, G.: Towards robust integrated circuits: The embryonics approach. Proceedings of the IEEE 88(4), 516–541 (2000)

    Article  Google Scholar 

  20. Neti, S., Muller, H.: Quality criteria and an analysis framework for self-healing systems. In: ICSE Workshops International Workshop on Software Engineering for Adaptive and Self-Managing Systems SEAMS 2007, p. 6 (2007)

    Google Scholar 

  21. Neti, S., Muller, H.A.: Quality criteria and an analysis framework for self-healing systems. In: International Workshop on Software Engineering for Adaptive and Self-Managing Systems, p. 6 (2007)

    Google Scholar 

  22. Neumann, J.V.: Theory of Self-Reproducing Automata. University of Illinois Press, Champaign (1966)

    Google Scholar 

  23. Ortega, C., Tyrell, A.: MUXTREE revisited: Embryonics as a reconfiguration strategy in fault-tolerant processor arrays. In: Sipper, M., Mange, D., Pérez-Uribe, A. (eds.) ICES 1998. LNCS, vol. 1478, p. 217. Springer, Heidelberg (1998)

    Google Scholar 

  24. Ortega, C., Tyrrell, A.: Reliability analysis in self-repairing embryonic systems. Memory 12, 11 (1999)

    Google Scholar 

  25. Ortega, C., Tyrrell, A.: Self-repairing multicellular hardware: A reliability analysis. In: Floreano, D., Mondada, F. (eds.) ECAL 1999. LNCS, vol. 1674, pp. 442–446. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  26. Ortega, C., Tyrrell, A.: A hardware implementation of an embryonic architecture using Virtex® FPGAs. In: Miller, J.F., Thompson, A., Thompson, P., Fogarty, T.C. (eds.) ICES 2000. LNCS, vol. 1801, pp. 155–164. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  27. Ortega, C., Tyrrell, A.: A hardware implementation of an embryonic architecture using virtex fpgas. In: Miller, J.F., Thompson, A., Thompson, P., Fogarty, T.C. (eds.) ICES 2000. LNCS, vol. 1801, pp. 155–164. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  28. Ortega-Sanchez, C., Mange, D., Smith, S., Tyrrell, A.: Embryonics: A bio-inspired cellular architecture with fault-tolerant properties. Genetic Programming and Evolvable Machines 1(3), 187–215 (2000)

    Article  MATH  Google Scholar 

  29. Ortega-Sanchez, C., Tyrrell, A.: Design of a basic cell to construct embryonic arrays. IEE Proceedings-Computers and Digital Techniques 145(3), 242–248 (1998)

    Article  Google Scholar 

  30. Prodan, L., Tempesti, G., Mange, D., Stauffer, A.: Embryonics: electronic stem cells. Artificial life eight, 101 (2003)

    Google Scholar 

  31. Restrepo, H.F., Mange, D.: An embryonics implementation of a self-replicating universal turing machine, pp. 74–87 (2001)

    Google Scholar 

  32. Sanchez, E., Mange, D., Sipper, M., Tomassini, M., Pérez-Uribe, A., Stauffer, A.: Phylogeny, ontogeny, and epigenesis: Three sources of biological inspiration for softening hardware. In: Higuchi, T., Iwata, M., Weixin, L. (eds.) ICES 1996. LNCS, vol. 1259, pp. 33–54. Springer, Heidelberg (1997)

    Google Scholar 

  33. Stauffer, A., Mange, D., Goeke, M., Madon, D., Tempesti, G., Durand, S., Marchal, P., Piguet, C.: MICROTREE: Towards a Binary Decision Machine-Based FPGA with Biological-like Properties, pp. 103–112 (1996)

    Google Scholar 

  34. Szasz, C., Chindris, V.: Artificial life and communication strategy in bio-inspired hardware systems with FPGA-based cell networks. In: 11th International Conference on Intelligent Engineering Systems, INES 2007, pp. 77–82 (2007)

    Google Scholar 

  35. Szasz, C., Chindris, V.: Development strategy and implementation of a generalized model for FPGA-based artificial cell in bio-inspired hardware systems. In: 5th IEEE International Conference on Industrial Informatics, vol. 2 (2007)

    Google Scholar 

  36. Szasz, C., Chindris, V.: Bio-inspired hardware systems development and implementation with FPGA-based artificial cell network. In: IEEE International Conference on Automation, Quality and Testing, Robotics, AQTR 2008, vol. 1 (2008)

    Google Scholar 

  37. Szasz, C., Czumbil, L.: Artificial molecule development model for genes implementation in bio-inspired hardware systems. In: 11th International Conference on Optimization of Electrical and Electronic Equipment, OPTIM 2008, pp. 15–20 (2008)

    Google Scholar 

  38. Tempesti, G., Mange, D., Mudry, P., Rossier, J., Stauffer, A.: Self-replicating hardware for reliability: The embryonics project. ACM Journal on Emerging Technologies in Computing Systems (JETC) 3(2), 9 (2007)

    Article  Google Scholar 

  39. Tempesti, G., Mange, D., Stauffer, A.: A self-repairing FPGA inspired by biology. In: Proc. 3rd IEEE Int. On-Line Testing Workshop, pp. 191–195 (1997)

    Google Scholar 

  40. Tempesti, G., Mange, D., Stauffer, A.: Self-replicating and self-repairing multicellular automata. Artificial Life 4(3), 259–282 (1998)

    Article  Google Scholar 

  41. Tyrrell, A., Sanchez, E., Floreano, D., Tempesti, G., Mange, D., Moreno, J., Rosenberg, J., Villa, A.: Poetic tissue: An integrated architecture for bio-inspired hardware. In: Tyrrell, A.M., Haddow, P.C., Torresen, J. (eds.) ICES 2003. LNCS, vol. 2606, pp. 269–294. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  42. Yao, X., Higuchi, T.: Promises and challenges of evolvable hardware. In: Evolvable Systems: From Biology to Hardware, pp. 55–78 (1997)

    Google Scholar 

  43. Zhang, X., Dragffy, G., Pipe, A., Gunton, N., Zhu, Q.: A reconfigurable self-healing embryonic cell architecture. Differentiation 1, 4 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Seffrin, A., Biedermann, A. (2010). Cellular-Array Implementations of Bio-inspired Self-healing Systems: State of the Art and Future Perspectives. In: Biedermann, A., Molter, H.G. (eds) Design Methodologies for Secure Embedded Systems. Lecture Notes in Electrical Engineering, vol 78. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16767-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16767-6_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16766-9

  • Online ISBN: 978-3-642-16767-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics