Skip to main content

Watermark Synchronization Based on Locally Most Stable Feature Points

  • Conference paper
Book cover Computational Collective Intelligence. Technologies and Applications (ICCCI 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6422))

Included in the following conference series:

  • 1050 Accesses

Abstract

A novel feature based watermark synchronization scheme is presented in this paper. The feature points are first extracted from the image and the idea of locally most stable feature points (LMSP) is proposed to generate some non-overlapped circular areas. The local regions are geometrically invariant so that they can be directly used for efficient watermark embedding and extraction. Simulation results have demonstrated the effectiveness of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O’Ruanaidh, J., Pun, T.: Rotation, scale and translation invariant digital image watermarking. Signal Process. 66(3), 303–317 (1998)

    Article  MATH  Google Scholar 

  2. Lin, C., Wu, M., Bloom, J., Cox, I., Miller, M., Lui, Y.: Rotation, scale, and translation resilient watermarking of images. IEEE Trans. Image Process. 10(5), 767–782 (2001)

    Article  MATH  Google Scholar 

  3. Zheng, D., Zhao, J., El-Saddik, A.: RST-invariant digital image watermarking based on log-polar mapping and phase correlation. IEEE Trans. Circuits Syst. Video Technol. 13(8), 753–765 (2003)

    Article  Google Scholar 

  4. Kim, H., Lee, H.: Invariant image watermark using Zernike moments. IEEE Trans. Circuits Syst. Video Technol. 13(8), 766–775 (2003)

    Article  Google Scholar 

  5. Xin, Y., Liao, S., Pawlak, M.: Circularly orthogonal moments for geometrically robust image watermarking. Pattern Recognit. 40(12), 3740–3752 (2007)

    Article  MATH  Google Scholar 

  6. Pereira, S., Pun, T.: Robust template matching for affine resistant image watermarks. IEEE Trans. Image Process. 9(6), 1123–1129 (2000)

    Article  Google Scholar 

  7. Kutter, M., Bhattacharjee, S., Ebrahimi, T.: Towards second generation watermarking schemes. In: Proc. IEEE Int. Conf. Image Process., Kobe, Japan., vol. 1, pp. 320–323 (1999)

    Google Scholar 

  8. Bas, P., Chassery, J., Macq, B.: Geometrically invariant watermarking using feature points. IEEE Trans. Image Process. 11(9), 1014–1028 (2002)

    Article  Google Scholar 

  9. Qi, X., Qi, J.: A robust content-based digital image watermarking scheme. Signal Process. 87(6), 1264–1280 (2007)

    Article  MATH  Google Scholar 

  10. Tang, C., Hang, H.: A feature-based robust digital image watermarking scheme. IEEE Trans. Signal Process. 51(4), 950–959 (2003)

    Article  MathSciNet  Google Scholar 

  11. Seo, J., Yoo, C.: Localized image watermarking based on feature points of scale-space representation. Pattern Recognit. 37(7), 1365–1375 (2004)

    Article  MATH  Google Scholar 

  12. Seo, J., Yoo, C.: Image watermarking based on invariant regions of scale-space representation. IEEE Trans. Signal Process. 54(4), 1537–1549 (2004)

    Article  Google Scholar 

  13. Wang, X., Wu, J., Niu, P.: A new digital image watermarking algorithm resilient to desynchronization attacks. IEEE Trans. Inf. Forensics Security 2(4), 655–663 (2007)

    Article  Google Scholar 

  14. Lee, H., Kim, H., Lee, H.: Robust image watermarking using local invariant features. Opt. Eng. 45(3), 037002(1–11) (2006)

    Google Scholar 

  15. Harris, C., Stephens, M.: A combined corner and edge detector. In: Proceedings of 4th Alvey Vision Conference, pp. 147–151 (1988)

    Google Scholar 

  16. Alghoniemy, M., Tewfik, A.: Geometric invariance in image watermarking. IEEE Trans. Image Process. 13(2), 145–153 (2004)

    Article  Google Scholar 

  17. Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detectors. Int. J. Comput. Vis. 60(1), 63–86 (2004)

    Article  Google Scholar 

  18. Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Qian, J., Li, L., Lu, Z. (2010). Watermark Synchronization Based on Locally Most Stable Feature Points. In: Pan, JS., Chen, SM., Nguyen, N.T. (eds) Computational Collective Intelligence. Technologies and Applications. ICCCI 2010. Lecture Notes in Computer Science(), vol 6422. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16732-4_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16732-4_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16731-7

  • Online ISBN: 978-3-642-16732-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics