Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6422))

Included in the following conference series:

Abstract

A new model “influence club” for cohesion group in a social network is proposed. It generalizes the definition of k-club and has two advantages. First, the influence between two nodes does not only depend on the their distance but also on the numbers of pathways of different lengths. Second, the new model is more flexible than k-club and can provide middle results between k-club and (k + 1)-club. We propose a branch-and-bound algorithm for finding the maximum influence club. For an n-node graph, the worst-case time complexity is O(n 3 1.6n), and it is much more efficient in practical: a graph of 200 nodes can be processed within 2 minutes. The performance compared to k-clubs are tested on random graphs and real data. The experimental results also show the advantages of the influence clubs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alba, R.D.: A graph-theoretic definition of a sociometric clique. Journal of Mathematical Sociology 3, 113–126 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  2. Borgatti, S.P.: Centrality and network flow. Social Networks 27, 55–71 (2005)

    Article  Google Scholar 

  3. Bourjolly, J.M., Laporte, G., Pesant, G.: Heuristics for finding k-clubs in an undirected graph. Computers Operations Research 27, 559–569 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bourjolly, J.M., Laporte, G., Pesant, G.: An exact algorithm for the maximum k-club problem in an undirected graph. European Journal of Operational Research 138, 21–28 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brandes, U., Fleischer, D.: Centrality measures based on current flow. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 533–544. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Erdös, P., Rényi, A.: On random graphs. Publicationes Mathematicae 6, 290–297 (1959)

    MathSciNet  MATH  Google Scholar 

  7. Freeman, L.C., Borgatti, S.P., White, D.R.: Centrality in valued graphs: A measure of betweenness based on network flow. Social Networks 13(2), 141–154 (1991)

    Article  MathSciNet  Google Scholar 

  8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to The Theory of NP-Completeness. Freeman, NewYork (1979)

    MATH  Google Scholar 

  9. Hanneman, R.A., Riddle, M.: Introduction to social network methods (2005), http://www.faculty.ucr.edu/hanneman/nettext/

  10. Hubbell, C.H.: An input-output approach to clique detection. Sociometry 28, 277–299 (1965)

    Article  Google Scholar 

  11. Johnson, D.S., Trick, M.A. (eds.): Cliques, coloring, and Satisability: Second DIMACS Implementation Challenge. DIMACS Series in Discrete Mathematics and Theoretical Computer Science. American Mathematical Society, Providence (1996)

    Google Scholar 

  12. Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18, 39–43 (1953)

    Article  MATH  Google Scholar 

  13. Mokken, R.J.: Cliques, clubs, and clans. Quality and Quantity 13, 161–173 (1979)

    Article  Google Scholar 

  14. Newman, M.E.J.: The structure and function of complex networks. SIAM Review 45, 167–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Newman, M.E.J.: A measure of betweenness centrality based on random walks. Social Networks 27, 39–54 (2005)

    Article  Google Scholar 

  16. de Solla Price, D.J.: Networks of scientific papers. Science 149, 510–515 (1965)

    Article  Google Scholar 

  17. Solomonoff, R., Rapoport, A.: Connectivity of random nets. Bulletin of Mathematical Biophysics 13, 107–117 (1951)

    Article  MathSciNet  Google Scholar 

  18. UCINet, Release 6.0, Mathematical Social Science Group, Social School of Science, University of California at Irvine

    Google Scholar 

  19. Wasserman, S., Faust, K.: Social Network Analysis. Cambridge University Press, Cambridge (1994)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yang, CP., Liu, CY., Wu, B.Y. (2010). Influence Clubs in Social Networks. In: Pan, JS., Chen, SM., Nguyen, N.T. (eds) Computational Collective Intelligence. Technologies and Applications. ICCCI 2010. Lecture Notes in Computer Science(), vol 6422. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16732-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16732-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16731-7

  • Online ISBN: 978-3-642-16732-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics