A Rotation Invariant Face Recognition Method Based on Complex Network

  • Wesley Nunes Gonçalves
  • Jonathan de Andrade Silva
  • Odemir Martinez Bruno
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6419)


Face recognition is an important field that has received a lot of attention from computer vision community, with diverse set of applications in industry and science. This paper introduces a novel graph based method for face recognition which is rotation invariant. The main idea of the approach is to model the face image into a graph and use complex network methodology to extract a feature vector. We present the novel methodology and the experiments comparing it with four important and state of art algorithms. The results demonstrated that the proposed method has more positive results than the previous ones.


Face Recognition Complex Network Graph 


  1. 1.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393(6684), 440–442 (1998)CrossRefzbMATHGoogle Scholar
  2. 2.
    Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Backes, A.R., Casanova, D., Bruno, O.M.: A complex network-based approach for boundary shape analysis. Pattern Recognition 42(1), 54–67 (2009)CrossRefzbMATHGoogle Scholar
  4. 4.
    Silva, T.C., Zhao, L.: Pixel clustering by using complex network community detection technique. In: ISDA, pp. 925–932. IEEE Computer Society, Los Alamitos (2007)Google Scholar
  5. 5.
    Erdős, P., Rényi, A.: On random graphs. I. Publ. Math. Debrecen 6, 290–297 (1959)zbMATHGoogle Scholar
  6. 6.
    Costa, L.F., Rodrigues, F.A., Travieso, G., Boas, P.R.V.: Characterization of complex networks: A survey of measurements. Advances In Physics 56, 167–242 (2007)CrossRefGoogle Scholar
  7. 7.
    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: Structure and dynamics. Physics Reports 424(4-5), 175–308 (2006)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Samaria, F.S., Harter, A.C.: Parameterisation of a stochastic model for human face identification. In: IEEE Workshop on Appl. of Computer Vision, pp. 138–142 (1994)Google Scholar
  9. 9.
    Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)zbMATHGoogle Scholar
  10. 10.
    Belhumeur, P.N., Jo, a.P.H., Kriegman, D.J.: Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE PAMI 19(7), 711–720 (1997)CrossRefGoogle Scholar
  11. 11.
    Zuo, W., Wang, K., Zhang, D., Zhang, H.: Combination of two novel lda-based methods for face recognition. Neurocomputing 70(4-6), 735–742 (2007)CrossRefGoogle Scholar
  12. 12.
    He, X., Yan, S., Hu, Y., Niyogi, P., Zhang, H.J.: Face recognition using laplacianfaces. IEEE Trans. Pattern Anal. Mach. Intell. 27(3), 328–340 (2005)CrossRefGoogle Scholar
  13. 13.
    He, X., Cai, D., Yan, S., Zhang, H.J.: Neighborhood preserving embedding. In: IEEE International Conference on Computer Vision, vol. 2, pp. 1208–1213 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Wesley Nunes Gonçalves
    • 1
  • Jonathan de Andrade Silva
    • 1
  • Odemir Martinez Bruno
    • 1
  1. 1.Instituto de Física de São CarlosUniversity of São PauloSão CarlosBrazil

Personalised recommendations