Localization in Real GSM Network with Fingerprinting Utilization

  • Jozef Benikovsky
  • Peter Brida
  • Juraj Machaj
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 45)

Abstract

This paper attempts to present current state in the area of user localization in cellular networks and shows custom solution for positioning using pocket computer and fingerprint method also known as fingerprinting. It operates in Global System for Mobile communications (GSM) network, although fingerprinting is also applicable in other wireless networks, such as Universal Mobile Telecommunications System (UMTS), Bluetooth or 802.11. Implementation is explained and it is compared to existing solutions. The performance of the system is evaluated for various scenarios by statistical characteristics and Circular Error Probability (CEP). The scenarios are proposed from observation of various parameters that influence the localization accuracy.

Keywords

Localization Positioning GSM Fingerprinting method Circular error probability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    GSM Association, Market Data Summary (Q2 2009) Connections by Bearer Technology (2009), http://www.gsmworld.com/newsroom/market-data/market_data_summary.htm
  3. 3.
    Wang, X., Wang, Z., O’Dea, B.: A TOA-based location algorithm reducing the errors due to non-line-of-sight (NLOS) propagation. IEEE Transactions on Vehicular Technology 52(1), 112–116 (2003)CrossRefGoogle Scholar
  4. 4.
    Deligiannis, N., Kotsopoulos, S.: Mobile Positioning Based on Existing Signalling Messaging in GSM Networks. In: Proceedings of 3rd International Mobile Multimedia Communications Conference (MSAN), Nafpaktos (2007)Google Scholar
  5. 5.
    Brida, P., Cepel, P., Duha, J.: Mobile Positioning in Next Generation Networks (Chapter XI). In: Kotsopoulos, S., Ioannou, K. (eds.) Handbook of Research on Heterogeneous Next Generation Networking: Innovations and Platforms, pp. 223–252. IGI Global, New York (2008), ISBN 978-1-60566-108-7Google Scholar
  6. 6.
    Krejcar, O.: User Localization for Intelligent Crisis Management. In: 3rd IFIP Conference on Artificial Intelligence Applications and Innovation (AIAI 2006), Athens, Greece, June 07-09, vol. 204, pp. 221–227 (2006), ISSN: 1571-5736Google Scholar
  7. 7.
    Brida, P., Cepel, P., Duha, J.: A Novel Adaptive Algorithm for RSS Positioning in GSM Networks. In: CSNDSP 2006 Proceedings, Patras, pp. 748–751 (2006), ISBN 960-89282-0-6Google Scholar
  8. 8.
    Anne, K.R., Kyamakya, K., Erbas, F., Takenga, C., Chedjou, J.C.: GSM RSSI-based Positioning Using Extended Kalman Filter for Training ANN. In: IEEE Vehicular Technology Conference, Los Angeles, vol. 7(60), pp. 4141–4145 (2004), ISBN: 0-7803-8521-7Google Scholar
  9. 9.
    Laitinen, H., Nordstrom, T., Lahteenmaki, J.: Location of GSM Terminals Using a Database of Signal Strength Measurements. In: URSI XXV, National Convention on Radio Science, Helsinki (2000)Google Scholar
  10. 10.
    Takenga, C., Kyamakya, K., Quan, W.: On the Accuracy Improvement Issues in GSM Location Fingerprinting. In: Vehicular Technology Conference, VTC-2006 Fall, Hannover, pp. 1–5 (2006), ISBN 1-4244-0062-7Google Scholar
  11. 11.
    Nerguizian, C., Despins, C., Affes, S.: Indoor Geolocation with Received Signal Strength Fingerprinting Technique and Neural Networks. In: de Souza, J.N., Dini, P., Lorenz, P. (eds.) ICT 2004. LNCS, vol. 3124, pp. 866–875. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Hata, M., Nagatsu, T.: Mobile Location Using Signal Strength Measurements in a Cellular System. IEEE Trans. on Vehicular Technology VT-29, 245–252 (1980)CrossRefGoogle Scholar
  13. 13.
    Wong, C.L.C., Lee, M.C., Chan, R.K.W.: GSM-based mobile positioning using WAP. In: Wireless Communications and Networking Conference (WCNC), vol. 2, pp. 874–878 (2000)Google Scholar
  14. 14.
    Otsason, V.: Accurate Indoor Localization Using Wide GSM Fingerprinting, Master’s thesis, Tartu (2005)Google Scholar
  15. 15.
    Kurner, T., Meier, A.: Prediction of outdoor and outdoor-to-indoor coverage in urban areas at 1.8 GHz. IEEE on Selected Areas in Communications 20 (2002)Google Scholar
  16. 16.
    Kolodziej, K.W., Hjelm, J.: Local Positioning Systems, LBS Applications and Services, pp. 156–157. CRC Press, Boca Raton (2006), ISBN 978-0-8493-3349-1CrossRefGoogle Scholar
  17. 17.
    WTB/Policy: FCC Wireless 911 Requirements (2001) Google Scholar
  18. 18.
    Brida, P.: Location Technologies for GSM. In: Proceedings of 5th European Conference of Young Research and Science Workers in Transport and Telecommunication TRANSCOM, Zilina, pp. 119–122 (2003), ISBN 80-8070-081-8Google Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2010

Authors and Affiliations

  • Jozef Benikovsky
    • 1
  • Peter Brida
    • 1
  • Juraj Machaj
    • 1
  1. 1.Faculty of Electrical Engineering, Department of Telecommunications and MultimediaUniversity of ZilinaZilinaSlovakia

Personalised recommendations