Advertisement

A Case Study of Parameter Control in a Genetic Algorithm: Computer Network Performance

  • J. A. Fernández-Prieto
  • J. Canada-Bago
  • M. A. Gadeo-Martos
  • Juan R. Velasco
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 45)

Abstract

Genetic Algorithms use different parameters to control their evolutionary search for the solution to problems. However, there are no standard rules for choosing the best parameter values, being difficult to know whether the parameter values must be fixed during a run or must be modified dynamically. Besides, there are many theoretical results on parameter control, but however, very often real world problems call for shortcuts and/or some ad hoc solutions. This paper presents an effective approach for optimization of control parameters which is based on a meta-GA combined with an adaptation strategy to improve the GA performance. In order to validate the approach, it has been applied to verify the performance of a real system: a computer network. The results have been compared with the ones obtained for other methods: using fixed and adapted parameter values. A statistical analysis has been done to ascertain whether differences are significant.

Keywords

Parameter control Computer Networks Throughput 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goldberg, D.E.: Genetic Algorithms in search, optimization and Machine Learning. Addison-Wesley, New York (1989)MATHGoogle Scholar
  2. 2.
    Cordón, O., Herrera, F., Hoffmann, F., Magdalena, L.: Genetic Fuzzy Systems: Evolutionary tuning and learning of fuzzy knowledge bases. Advances in fuzzy systems – Applications and theory, vol. 19. World Scientific Publishing, Singapore (2001)MATHGoogle Scholar
  3. 3.
    Herrera, F., Lozano, M.: Fuzzy adaptive genetic algorithms: design, taxonomy, and future directions. Soft Computing 7, 545–562 (2003)CrossRefGoogle Scholar
  4. 4.
    Grefenstette, J.J.: Optimization of control parameters for genetic algorithms. IEEE Transactions on Systems, Man and Cybernetics 16(1), 122–128 (1986)CrossRefGoogle Scholar
  5. 5.
    Eiben, A.E., Michalewicz, Z., Schoenauer, M., Smith, J.E.: Parameter Control in Evolutionary Algorithms. In: Parameter Setting in Evolutionary Algorithms. Springer, Heidelberg (2007)Google Scholar
  6. 6.
    De Jong, K.: An analysis of the behaviour of a class of genetic adaptive systems. PhD thesis, University of Michigan (1975)Google Scholar
  7. 7.
    Grefenstette, J.J.: Optimization of control parameters for genetic algorithms. IEEE Transactions on Systems, Man and Cybernetics 16(1), 122–128 (1986)CrossRefGoogle Scholar
  8. 8.
    Bramlette, M.F.: Initialization, mutation and selection methods in genetic algorithms for function optimization. In: Proceedings of the Fourth International Conference on Genetic Algorithms, pp. 100–107. Morgan Kaufmann, San Mateo (1991)Google Scholar
  9. 9.
    Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algorithms. IEEE Transactions on Evolutionary Computation 3, 124–141 (1999)CrossRefGoogle Scholar
  10. 10.
    Cicirello, V.A., Smith, S.F.: Modeling GA performance for control parameter optimization. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 235–242. Morgan Kaufmann Publishers, Las Vegas (2000)Google Scholar
  11. 11.
    Michalewicz, Z., Schmidt, M.: Parameter Control in Practice. In: Parameter Setting in Evolutionary Algorithms. Springer, Heidelberg (2007)Google Scholar
  12. 12.
    Wolpert, D.H., MacReady, W.G.: No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation 1(1), 67–82 (1997)CrossRefGoogle Scholar
  13. 13.
    Hinterding, R., Michalewicz, Z., Eiben, G.: Adaptation in Evolutionary Computation: A Survey. In: Proc. of the IEEE Conference on Evolutionary Computation, pp. 65–69 (1997)Google Scholar
  14. 14.
    De Jong, K.: Parameter Setting in EAs: a 30 year Perspective. Parameter Setting in Evolutionary Algorithms. Springer, Heidelberg (2007)Google Scholar
  15. 15.
    Hui, J.: Switching and Traffic Theory for Integrated Broad Band Networks. Kluwer Academic Publisher, Dordrecht (1990)CrossRefGoogle Scholar
  16. 16.
    Karagiannis, T., Molle, M., Faloutsos, Broido, A.: A nonstationary poisson view of internet traffic. Proc. of the Twenty-third Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM), Hong Kong, vol. 3, pp. 1558–1569 (2004)Google Scholar
  17. 17.
    Cao, J., Cleveland, W., Lin, D., Sun, D.: Internet traffic Tends Toward Poisson and Independent as the Load Increases. In: Holmes, C., Dennison, D., Hansen, M., Yu, B., Mallick, B. (eds.) Nonlinear Estimation and Classification 2002. LNS, pp. 83–109. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Corne, D.W., Oates, M.J., Smith, G.D.: Telecommunications Optimization: Heuristic and Adaptive Techniques. John Wiley and Sons Ltd., Chichester (2000)Google Scholar
  19. 19.
    Karthik, S., Jawajar, V., Chidambararajan, B., Srivatsa, S.K.: Performance of TCP over satellite networks under severe cross-traffic using GA. International Journal Mobile Communications 2(4), 382–394 (2004)CrossRefGoogle Scholar
  20. 20.
    The Network Simulator -ns-2, http://www.isi.edu/nsnam/ns
  21. 21.
    Fernández-Prieto, J.A., Velasco, J.R.: Application of Genetic Algorithms in the research of the optimum probabilities of the genetic operators. In: 8th International Conference on Information Processing and Management of Uncertainty in Knowledge Based Systems (IPMU), pp. 291–297 (2000)Google Scholar
  22. 22.
  23. 23.
    Herrera, F., Lozano, M., Verdegay, J.L.: The Use of Fuzzy Connectives to Design Real-Coded Genetic Algorithms. Mathware and Soft Computing 1(3), 239–251 (1995)MathSciNetMATHGoogle Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2010

Authors and Affiliations

  • J. A. Fernández-Prieto
    • 1
  • J. Canada-Bago
    • 1
  • M. A. Gadeo-Martos
    • 1
  • Juan R. Velasco
    • 2
  1. 1.Telecommunication Engineering Department, E.P.S. LinaresUniversity of JaénLinares ,JaénSpain
  2. 2.Departament of AutomaticUniversity of AlcaláAlcala de Henares ,MadridSpain

Personalised recommendations