Harmony Search Heuristics for Quasi-asynchronous CDMA Detection with M-PAM Signalling

  • S. Gil-Lopez
  • J. Del Ser
  • L. Garcia-Padrones
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 45)


Focusing on CDMA (Code Division Multiple Access) uplink communications, this paper addresses the application of heuristic techniques to the multiple user detection problem when dealing with asynchrony between transmitters and bandwidth-limited PAM (Pulse Amplitude Modulation) signals. In such systems it is known that, even for the simplest case of binary modulated signals with perfectly synchronous transmitters, simple Single-User Detection (SUD) techniques (e.g. Rake receiver) are outperformed by Multiple-User Detection (MUD) schemes (based on the Maximum-Likelihood – ML – criteria), at a computational cost exponentially increasing with the number of users. Consequently, Genetic Algorithms (GA) have been extensively studied during the last decade as a means to alleviate the computational complexity of CDMA MUD detectors while incurring, at the same time, in a negligible error rate penalty. In this manuscript, a novel heuristic approach inspired in the recent Harmony Search algorithm will be shown to provide a faster convergence and a better error rate performance than conventional GA’s in presence of inter-user asynchrony in bandwidth-limited CDMA communications, specially when the complexity of the scenario increases.


CDMA Multi-user Detection Genetic Algorithm Harmony Search 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Garey, M.R., Johnson, D.S.: Computer and Intractability: A Guide to the Theory of NP-completeness. W. H. Freeman and Company, New York (1979)MATHGoogle Scholar
  2. 2.
    Chang, C.J., Wu, C.H.: Optimal Frame Pattern Design for a TDMA Mobile Communication System Using a Simulated Annealing Algorithm. IEEE Transactions on Vehicular Technology 42(2), 205–211 (1993)MathSciNetCrossRefGoogle Scholar
  3. 3.
    White, M.S., Flockton, S.J.: A Genetic Adaptive Algorithm for Data Equalization. In: Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence, vol. 2, pp. 665–669 (1994)Google Scholar
  4. 4.
    Chen, S., Wu, Y., McLaughlin, S.: Genetic Algorithm Optimization for Blind Channel Identification with Higher Order Cumulant Fitting. IEEE Transactions on Evolutionary Computation 1(4), 259–265 (1997)CrossRefGoogle Scholar
  5. 5.
    Salcedo-Sanz, S., Yao, X.: Assignment of Cells to Switches in a Cellular Mobile Network using a Hybrid Hopfield Network-Genetic Algorithm Approach. Applied Soft Computing 8(1), 216–224 (2008)CrossRefGoogle Scholar
  6. 6.
    Salcedo-Sanz, S., Portilla-Figueras, J.A., Garcia-Vazquez, F., Jimenez-Fernandez, S.: Solving Terminal Assignment Problems with Groups Encoding: The Wedding Banquet Problem. Engineering Applications of Artificial Intelligence 19, 569–578 (2006)CrossRefGoogle Scholar
  7. 7.
    Alonso-Garrido, O., Salcedo-Sanz, S., Agustin-Blas, L.E., Ortiz-Garcia, E.G., Perez-Bellido, A.M., Portilla-Figueras, J.A.: A Hybrid Grouping Genetic Algorithm for the Multiple-Type Access Node Location Problem. In: Corchado, E., Yin, H. (eds.) IDEAL 2009. LNCS, vol. 5788, pp. 376–383. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Landa, I., Garcia-Padrones, L., Gil-Lopez, S., Del Ser, J., Salcedo-Sanz, S.: On the Application of a Novel Grouping Harmony Search Algorithm to the Heterogeneous Access Node Location Problem. Submitted to 2nd International Conference on Mobile Lightweight Systems (MOBILIGHT), Barcelona, Spain (2009)Google Scholar
  9. 9.
    Verdu, S.: Minimum probability of Error for Asynchronous Gaussian Multiple Access Channel. IEEE Transaction of Information Theory 32, 85–96 (1986)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Juntti, M.J., Schlosser, T., Lilleberg, J.O.: Genetic Algorithms for Multiuser Detection in Synchronous CDMA. In: IEEE International Symposium on Information Theory, Ulm, Germany, p. 492 (1997)Google Scholar
  11. 11.
    Jiang, M., Akhtman, J., Hanzo, L.: Genetic Algorithm Joint Channel Estimation and MUD for SDMA OFDM. OFDM and MC-CDMA: A Primer, pp. 303–330. John Wiley, Chichester (2006)Google Scholar
  12. 12.
    Ciriaco, F., Abrao, T., Jeszensky, P.J.E.: DS-CDMA Multiuser Detection with Evolutionary Algorithms. Journal of Universal Computer Science 12(4), 450–480 (2006)Google Scholar
  13. 13.
    Naeem, M., Ismail, S.S., Jamal, H.: Multiuser Detection in CDMA Fast Fading Multipath Channel using Heuristic Genetic Algorithms. World Academy of Science Engineering and Technology 12, 19–23 (2005)Google Scholar
  14. 14.
    Yen, K., Hanzo, L.: Genetic-Assisted Joint Multiuser Symbol Detection and Fading Channel Estimation for Synchronous CDMA Systems. IEEE Journal on Selected Areas in Communications 19(6), 985–998 (2001)CrossRefGoogle Scholar
  15. 15.
    Geem, Z.W., Hoon Kim, J., Loganathan, G.V.: A New Heuristic Optimization Algorithm: Harmony Search. Simulation 76(2), 60–68 (2001)CrossRefGoogle Scholar
  16. 16.
    Geem, Z.W.: Optimal Cost Design of Water Distribution Networks using Harmony Search. Engineering Optimization 38(3), 259–277 (2006)CrossRefGoogle Scholar
  17. 17.
    Forsati, R., Haghighat, A.T., Mahdavi, M.: Harmony Search Based Algorithms for Bandwidth-Delay-Constrained Least-Cost Multicast Routing. Computer Communications 31(10), 2505–2519 (2008)CrossRefGoogle Scholar
  18. 18.
    Geem, Z.W.: Harmony Search Algorithm for Solving Sudoku. In: Apolloni, B., Howlett, R.J., Jain, L. (eds.) KES 2007, Part I. LNCS (LNAI), vol. 4692, pp. 371–378. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Gil-Lopez, S., Del Ser, J., Olabarrieta, I.: A Novel Heuristic Algorithm for MultiUser Detection in Synchronous CDMA Wireless Sensor Networks. In: IEEE International Conference on Ultra Modern Telecommunications, San Petersburgo, Russia (2009)Google Scholar
  20. 20.
    Zhang, R., Hanzo, L.: Iterative Detection and Channel Decoding for DS-CDMA Using Harmony Search. IEEE Signal Processing Letters 16(10), 917–920 (2009)CrossRefGoogle Scholar
  21. 21.
    Ng, S.X., Yen, K., Hanzo, L.: M-ary Coded Modulation Assisted Genetic Algorithm Based Multiuser Detection for CDMA Systems. In: IEEE Wireless Communications and Networking Conference, vol. 2, pp. 779–783 (2003)Google Scholar
  22. 22.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Adison-Wesley, Reading (1989)MATHGoogle Scholar
  23. 23.
    Syswerda, G.: Uniform Crossover in Genetic Algorithms. In: Third International Conference in Genetic Algorithms, pp. 2–9 (1989)Google Scholar
  24. 24.
    Glober, F.: Tabu Search–Part I. ORSA Journal on Computing 1(3), 190–206 (1989)CrossRefGoogle Scholar
  25. 25.
    Glober, F.: Tabu Search–Part II. ORSA Journal on Computing 2(1), 4–32 (1989)Google Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2010

Authors and Affiliations

  • S. Gil-Lopez
    • 1
  • J. Del Ser
    • 1
  • L. Garcia-Padrones
    • 1
  1. 1.TECNALIA-TELECOM Pt. TecnológicoZamudioSpain

Personalised recommendations