Advertisement

Multi-radio Cooperative ARQ in Wireless Cellular Networks: A MAC Layer Perspective

  • J. Alonso-Zárate
  • E. Kartsakli
  • L. Alonso
  • M. Katz
  • Ch. Verikoukis
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 45)

Abstract

Multi-Radio Cooperative Automatic Retransmission Request (MCARQ) schemes are introduced in this paper within the context of hybrid networks which combine long-range and short-range communications. Since the number of wireless devices is incessantly increasing, it is frequently possible to establish a spontaneous cooperative cluster in the close proximity of any wireless device. These devices forming the cluster are connected to both a cellular-based network such as WiMAX, 3G, or LTE and a short-range network based on technologies such as WLAN, Zigbee, Bluetooh, or UWB, among other possibilities. The main idea behind the proposed MC-ARQ scheme is that, upon transmission error through the cellular interface, retransmission can be requested to the wireless grid surrounding the destination device using the short-range interface instead of the primary cellular link. Therefore, besides the cooperative diversity attained with CARQ schemes, the traffic load in the cellular interface is reduced benefiting thus a high number of users and reducing both energy consumption and interference. The Persistent Relay Carrier Sensing Medium Access (PRCSMA) protocol is presented as an example of solution for the MAC layer in this emerging new topic.

Keywords

cooperative communications heterogeneous networks cooperative ARQ Medium Access Control (MAC) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cover, T.M., Gamal, A.E.: Capacity Theorems for the Relay Channel. IEEE Transactions on Information Theory 25(5), 572 (1979)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Sendonaris, A., Erkip, E., Aazhang, B.: Station Cooperation Diversity-Part I: System Description. IEEE Transactions on Communications 51(11), 1927–1938 (2003)CrossRefGoogle Scholar
  3. 3.
    Laneman, J.N., Tse, D.N.C., Wornell, G.W.: Cooperative Diversity in Wireless Networks: Efficient Protocols and Outage Behavior. IEEE Transactions on Information Theory 50(12) (2004)Google Scholar
  4. 4.
    Fitzek, F.H.P., Katz, M.D.: Cooperation in Wireless Networks: Principles and Applications. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Fitzek, F.H.P., Katz, M., Zhang, Q.: Cellular Controlled Short-Range Communication for Cooperative P2P Networking. In: Wireless Research Forum (WWRF) 17, Heidelberg, Germany, WWRF, vol. WG 5 (2006)Google Scholar
  6. 6.
    Zimmermann, E., Herhold, P., Fettweis, G.: The Impact of Cooperation on Diversity-Exploiting Protocols. In: Proc. of the 59th IEEE Vehicular Technology Conference (2004)Google Scholar
  7. 7.
    Alonso-Zárate, J., Kartsakli, E., Verikoukis, C., Alonso, L.: Persistent RCSMA: A MAC Protocol for a Distributed Cooperative ARQ Scheme in Wireless Networks. EURASIP Journal on Advanced Signal Processing, Special Issue on Wireless Cooperative Networks 2008, article ID 817401, 13 (2008)Google Scholar
  8. 8.
    Alonso-Zárate, J., Alonso, L., Verikoukis, C.: Performance Analysis of a Persistent Relay Carrier Sensing Multiple Access Protocol. IEEE Transactions on Wireless Communications 8(12) (2009)Google Scholar
  9. 9.
    IEEE, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE Std. 802.-11-99 (1999)Google Scholar
  10. 10.
    IEEE, Part 15.4: Wireless MAC and PHY layer specifications for low-rate wireless personal area networks, IEEE Std. 802.15.4-2006 (2006)Google Scholar
  11. 11.
    Liu, P., Tao, Z., Panwar, S.: CoopMAC: A Cooperative MAC for Wireless LANs. IEEE Journal on Selected Areas on Communications 25(2) (2007)Google Scholar
  12. 12.
    Korakis, T., Natayanan, S., Bagri, A., Panwar, S.: Implementing a Cooperative MAC Protocol for Wireless LAN. In: Proc. of the IEEE International Conference on Communications (ICC 2006), vol. 10, pp. 4805–4810 (2006)Google Scholar
  13. 13.
    Tao, Z., Korakis, T., Slutskiy, Y., Panwar, S., Tassiulas, L.: Cooperation and Directionality: A Coop-directional MAC for Wireless Ad Hoc Networks. In: Proc. of the WiOpt (2007)Google Scholar
  14. 14.
    Shankar, S., Chou, C., Ghosh, M.: Cooperative Communication MAC (CMAC) – A new MAC protocol for Next Generation Wireless LANs. In: Proc. of the IEEE International Conference on Wireless Networks, Communications and Mobile Computing (2005)Google Scholar
  15. 15.
    Wang, X., Yang, C.: A MAC Protocol Supporting Cooperative Diversity for Distributed Wireless Ad Hoc Networks. In: Proc. of the IEEE International Symposium on PIMRC, Berlin, Germany (2005)Google Scholar
  16. 16.
    Azgin, A., Altunbasak, Y., Alrebig, G.: Cooperative MAC and Routing Protocols for Wireless Ad Hoc Networks. In: Proc. of the IEEE Globecom (2005)Google Scholar
  17. 17.
    Sadek, A., Ray Liu, K.J., Ephremides, A.: Collaborative Multiple-Access Protocols for Wireless Networks. In: Proc. of the IEEE International Conference on Communications, ICC 2006 (2006)Google Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2010

Authors and Affiliations

  • J. Alonso-Zárate
    • 1
  • E. Kartsakli
    • 2
  • L. Alonso
    • 2
  • M. Katz
    • 3
  • Ch. Verikoukis
    • 1
  1. 1.Centre Tecnològic de Telecomunicacions de Catalunya (CTTC)BarcelonaSpain
  2. 2.Department of Signal Theory and CommunicationsUniversitat Politècnica de Catalunya (UPC)BarcelonaSpain
  3. 3.University of OuluFinland

Personalised recommendations