Trade-off between Feedback Load for the Channel State Information and System Performance in MIMO Communications

  • Daniel Sacristán-Murga
  • Antonio Pascual-Iserte
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 45)


The performance of multiple-input multiple-output (MIMO) communication systems is greatly increased by having channel state information (CSI) at the transmitter. In systems with no channel reciprocity, a limited feedback link is used to send the CSI from the receiver to the transmitter. However, the resources for the feedback link come at the expense of resources from the communications link. This paper studies the trade-off between accurate feedback and system performance for systems using different feedback techniques. The optimum feedback load is computed for different transmission schemes including time-division duplex (TDD) and frequency-division duplexing (FDD).


MIMO systems feedback communication quantization limited feedback multiuser systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Telatar, I.E.: Capacity of multi-antenna Gaussian channels. European Trans. on Telecommunications 10(6), 585–595 (1999)CrossRefGoogle Scholar
  2. 2.
    Alamouti, S.M.: A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas in Communications 16(8), 1451–1458 (1998)CrossRefGoogle Scholar
  3. 3.
    Payaró, M., Palomar, P.: On optimal precoding in linear vector Gaussian channels with arbitrary input distribution. In: IEEE International Symposium on Information Theory (ISIT 2009), Seoul (2009)Google Scholar
  4. 4.
    Palomar, D.P., Cioffi, J.M., Lagunas, M.A.: Joint Tx-Rx beamforming design for multicarrier MIMO channels: a unified framework for convex optimization. IEEE Transactions on Signal Processing 51(9), 2381–2401 (2003)CrossRefGoogle Scholar
  5. 5.
    Roh, J.C., Rao, B.D.: Design and analysis of MIMO spatial multiplexing systems with quantized feedback. IEEE Transactions on Signal Processing 54(8), 2874–2886 (2006)CrossRefGoogle Scholar
  6. 6.
    Sacristán-Murga, D., Pascual-Iserte, A.: Differential feedback of MIMO channel correlation matrices based on geodesic curves. In: 34th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2009), Taipei (2009)Google Scholar
  7. 7.
    Love, D.J., Heath, R.W., Strohmer, T.: Grassmannian beamforming for multiple-input multiple-output wireless systems. IEEE Transactions on Information Theory 49(10), 2735–2747 (2003)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Talih, M.: Geodesic Markov chains on covariance matrices. In: Statistical and Applied Mathematical Sciences Institute, pp. 1–27 (2007)Google Scholar
  9. 9.
    Steele, R., Hanzo, L.: Mobile Radio Communications. John Wiley & Sons, Chichester (1999)CrossRefGoogle Scholar
  10. 10.
    Yang, J., Williams, D.B.: Transmission subspace tracking for MIMO systems with low-rate feedback. IEEE Transactions on Communications 55(8), 1629–1639 (2007)CrossRefGoogle Scholar
  11. 11.
    Inoue, T., Heath, R.W.: Geodesic prediction for limited feedback multiuser MIMO systems in temporally correlated channels. In: 4th IEEE Radio and Wireless Symposium, San Diego (2009)Google Scholar
  12. 12.
    Roh, J.C., Rao, B.D.: Efficient feedback methods for MIMO channels based on parameterization. IEEE Transactions on Wireless Communications 6(1), 282–292 (2007)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2010

Authors and Affiliations

  • Daniel Sacristán-Murga
    • 1
  • Antonio Pascual-Iserte
    • 1
    • 2
  1. 1.Centre Tecnològic de Telecomunicacions de Catalunya (CTTC)Spain
  2. 2.Department of Signal Theory and CommunicationsUniversitat Politècnica de Catalunya (UPC)Spain

Personalised recommendations