Advertisement

CogProt: A Framework for Cognitive Configuration and Optimization of Communication Protocols

  • Dzmitry Kliazovich
  • Neumar Malheiros
  • Nelson L. S. da Fonseca
  • Fabrizio Granelli
  • Edmundo Madeira
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 45)

Abstract

Advancements in network technologies dramatically increased management complexity. Cognitive networking was introduced to deal with this problem, by providing algorithms for autonomous network management and protocol reconfiguration. In this paper, we propose a framework for cognitive configuration and optimization of communication protocols called CogProt. CogProt is a distributed framework that allows dynamic reconfiguration of operational protocol stack parameters for optimizing protocol performance under changing network conditions. As a proof of concept, the framework is illustrated for the cognitive configuration of TCP congestion window evolution. In this setup, the TCP window increase factor is adjusted in runtime based on the TCP goodput experienced in the immediate past. Simulation results demonstrate that the proposed cognitive framework is able to improve average TCP performance under changing network conditions.

Keywords

cognitive networks self-configuration cognitive TCP 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akyildiz, I.F., Wang, X.: Cross-layer design in wireless mesh networks. IEEE Transactions on Vehicular Technology 57(2), 1061–1076 (2008)CrossRefGoogle Scholar
  2. 2.
    Allman, M., Floyd, S., Partridge, C.: Increasing TCP’s Initial Window. IETF RFC 3390 (Proposed Standard) (October 2002)Google Scholar
  3. 3.
    Demestichas, P., Stavroulaki, V., Boscovic, D., Lee, A., Strassner, J.: m@angel: autonomic management platform for seamless cognitive connectivity to the mobile internet. IEEE Communications Magazine 44(6), 118–127 (2006)CrossRefGoogle Scholar
  4. 4.
    Foukalas, F., Gazis, V., Alonistioti, N.: Cross-layer design proposals for wireless mobile networks: a survey and taxonomy. IEEE Communications Surveys & Tutorials 10(1), 70–85 (2008)CrossRefGoogle Scholar
  5. 5.
    ITU-T. Methods for subjective determination of transmission quality. ITU-T Recommendation P.800, International Telecommunication Union (ITU) (1996)Google Scholar
  6. 6.
    Mitola, J.: Cognitive radio for flexible mobile multimedia communications. Mobile Networks and Applications 6(5), 435–441 (2001)CrossRefMATHGoogle Scholar
  7. 7.
    Srivastava, V., Motani, M.: Cross-layer design: a survey and the road ahead. IEEE Communications Magazine 43(12), 112–119 (2005)CrossRefGoogle Scholar
  8. 8.
    Thomas, R.W., Friend, D.H., DaSilva, L.A., Mackenzie, A.B.: Cognitive networks: adaptation and learning to achieve end-to-end performance objectives. IEEE Communications Magazine 44(12), 51–57 (2006)CrossRefGoogle Scholar
  9. 9.
    Winter, R., Schiller, J.H., Nikaein, N., Bonnet, C.: Crosstalk: cross-layer decision support based on global knowledge. IEEE Communications Magazine 44(1), 93–99 (2006)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2010

Authors and Affiliations

  • Dzmitry Kliazovich
    • 1
  • Neumar Malheiros
    • 2
  • Nelson L. S. da Fonseca
    • 2
  • Fabrizio Granelli
    • 1
  • Edmundo Madeira
    • 2
  1. 1.DISIUniversity of TrentoTrentoItaly
  2. 2.Institute of ComputingUniversity of CampinasCampinasBrazil

Personalised recommendations