Wide–Weak Privacy–Preserving RFID Authentication Protocols

  • Yong Ki Lee
  • Lejla Batina
  • Dave Singelée
  • Ingrid Verbauwhede
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 45)


The emergence of pervasive computing devices such as RFID tags raises numerous privacy issues. Cryptographic techniques are commonly used to enable tag-to-server authentication while protecting privacy. Unfortunately, these algorithms and their corresponding implementations are difficult to adapt to the extreme conditions implied by the use of RFID. The extremely limited budget for energy and area do not allow the use of traditional cryptography.

In this paper, we address the risk of tracking attacks in RFID networks. Many lightweight protocols have been proposed so far that are founded on both, private- and public-key cryptosystems. We give an overview of existing solutions and discuss the latter ones in more detail. The solutions we advocate in this paper rely exclusively on Elliptic Curve Cryptography (ECC). We describe several authentication protocols that have different computational demands and accordingly different security features. To the best of our knowledge, these protocols are the first ECC-based authentication protocols which offer privacy protection against a wide-weak attacker. Compared to other RFID schemes proposed in the literature, our protocols remain light-weight in terms of area and computation time, while still achieving the required security and privacy properties.


Authentication Protocol Privacy Tracking Attack Elliptic Curve Cryptography RFID 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Avoine, G.: Adversarial Model for Radio Frequency Identification. Cryptology ePrint Archive, Report 2005/049 (2005),
  2. 2.
    Bellare, M., Palacio, A.: GQ and Schnorr Identification Schemes: Proofs of Security against Impersonation under Active and Concurrent Attacks. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 162–177. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Berbain, C., Billet, O., Etrog, J., Gilbert, H.: An efficient forward private RFID protocol. In: Proceedings of the 16th ACM conference on Computer and communications security (CCS 2009), pp. 43–53. ACM, New York (2009)Google Scholar
  4. 4.
    Bringer, J., Chabanne, H.: Trusted-HB: A Low-Cost Version of HB  +  Secure Against Man-in-the-Middle Attacks. IEEE Transactions on Information Theory 54(9), 4339–4342 (2008)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bringer, J., Chabanne, H., Dottax, E.: HB  + + : a Lightweight Authentication Protocol Secure against Some Attacks. In: Security, Privacy and Trust in Pervasive and Ubiquitous Computing - SecPerU (2006)Google Scholar
  6. 6.
    Bringer, J., Chabannel, H., Icart, T.: Cryptanalysis of EC-RAC, a RFID Identification Protocol. In: Franklin, M.K., Hui, L.C.K., Wong, D.S. (eds.) CANS 2008. LNCS, vol. 5339. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Danev, B., Heydt-Benjamin, T.S., Čapkun, S.: Physical-layer Identification of RFID Devices. In: Proceedings of the 18th USENIX Security Symposium (USENIX Security 2009), pp. 125–136. USENIX (2009)Google Scholar
  8. 8.
    Deursen, T., Radomirović, S.: Attacks on RFID Protocols. In: Cryptology ePrint Archive: listing for 2008 (2008/310) (2008)Google Scholar
  9. 9.
    Deursen, T., Radomirović, S.: Untraceable RFID protocols are not trivially composable: Attacks on the revision of EC-RAC. In: Cryptology ePrint Archive: Report 2009/332 (2009)Google Scholar
  10. 10.
    Fan, J., Hermans, J., Vercauteren, F.: On the Claimed Privacy of EC-RAC III. Cryptology ePrint Archive, Report 2010/132 (2010),
  11. 11.
    Feldhofer, M., Dominikus, S., Wolkerstorfer, J.: Strong Authentication for RFID Systems using the AES Algorithm. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 357–370. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Frumkin, D., Shamir, A.: Un-Trusted-HB: Security Vulnerabilities of Trusted-HB. In: Proceedings of RFIDSec 2009, Leuven, Belgium (2009)Google Scholar
  13. 13.
    Gilbert, H., Robshaw, M., Sibert, H.: An active attack against HB  +  - a provably secure lightweight authentication protocol. IEE processing letters 41(21), 1169–1170 (2005)Google Scholar
  14. 14.
    Hein, D., Wolkerstorfer, J., Felber, N.: ECC is Ready for RFID - A Proof in Silicon. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 401–413. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Juels, A., Weis, S.: Defining Strong Privacy for RFID. Cryptology ePrint Archive, Report 2006/137 (2006),
  16. 16.
    Juels, A., Weis, S.: Authenticating pervasive devices with human protocols. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 293–308. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Lee, Y.K., Batina, L., Singelée, D., Verbauwhede, I.: Low-Cost Untraceable Authentication Protocols for RFID. In: ACM Conference on Wireless Network Security - WiSec 2010. ACM, New York (2010)Google Scholar
  18. 18.
    Lee, Y.K., Batina, L., Verbauwhede, I.: EC-RAC (ECDLP Based Randomized Access Control): Provably Secure RFID authentication protocol. In: IEEE International Conference on RFID, pp. 97–104. IEEE, Los Alamitos (2008)Google Scholar
  19. 19.
    Lee, Y.K., Batina, L., Verbauwhede, I.: Untraceable RFID Authentication Protocols: Revision of EC-RAC. In: IEEE International Conference on RFID, pp. 178–185. IEEE, Los Alamitos (2009)Google Scholar
  20. 20.
    Lee, Y.K., Sakiyama, K., Batina, L., Verbauwhede, I.: Elliptic Curve Based Security Processor for RFID. IEEE Transactions on Computer 57(11), 1514–1527 (2008)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Ng, C., Susilo, W., Mu, Y., Safavi-Naini, R.: RFID Privacy Models Revisited. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp. 251–266. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    NIST National Institute of Standards and Technology. Cryptographic Hash Algorithm Competition,
  23. 23.
    Okamoto, T.: Provably Secure and Practical Identification Schemes and Corresponding Signature Schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 31–53. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  24. 24.
    Schnorr, C.-P.: Efficient Identification and Signatures for Smart Cards. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)Google Scholar
  25. 25.
    Toiruul, B., Lee, K.: An Advanced Mutual-Authentication Algorithm Using AES for RFID Systems. International Journal of Computer Science and Network Security 6(9B) (September 2006)Google Scholar
  26. 26.
    Tuyls, P., Batina, L.: RFID-tags for Anti-Counterfeiting. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 115–131. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  27. 27.
    Vaudenay, S.: On privacy models for RFID. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 68–87. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2010

Authors and Affiliations

  • Yong Ki Lee
    • 1
  • Lejla Batina
    • 2
    • 3
  • Dave Singelée
    • 2
  • Ingrid Verbauwhede
    • 2
  1. 1.Samsung Electronics Research and DevelopmentSouth Korea
  2. 2.IBBT – COSIC, Katholieke Universiteit LeuvenHeverleeBelgium
  3. 3.Digital Security groupRadboud University NijmegenNijmegenThe Netherlands

Personalised recommendations