“User Authentication Method and Implementation Using a Three-Axis Accelerometer”

  • Alexandros Zaharis
  • Adamantini Martini
  • Panayotis Kikiras
  • George Stamoulis
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 45)


The rapid growth of accelerometer use on consumer electronics has brought an opportunity for unique user authentication. We present an efficient recognition algorithm for such interaction using a single three-axis accelerometer. Unlike common user authentication methods which require memorizing complex phrases and are prone to physical attacks, our method requires a single training sample for a gesture pattern which allows users to authenticate themselves in a fast and secure manner. Our work imitates the use of physical handwritten signatures, which are a common authentication technique and tries to integrate them in a digital form. The presented method aims at providing easy to remember personalized gesture passwords through the muscle memory ability of the human body. An implementation using the wii remote sensor, along with identification results for different users is presented as a proof of concept.


gesture recognition three axis accelerometer sensor user authentication 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Haghighi, A.P., McCabe, B.D., Fetter, R.D., Palmer, J.E., Hom, S., Goodman, C.S.: Retrograde control of synaptic transmission by postsynaptic CaMKII at the Drosophila neuromuscular junction. Neuron 39, 255–267 (2003)CrossRefGoogle Scholar
  2. 2.
    McCabe, B.D., Marques, G., Haghighi, A.P., Fetter, R.D., Crotty, M.L., Haerry, T.E., Goodman, C.S., O’Connor, M.B.: The BMP homolog Gbb provides a retrograde signal that regulates synaptic growth at the Drosophila neuromuscular junction. Neuron 39, 241–254 (2003)CrossRefGoogle Scholar
  3. 3.
    Muscle Memory, Dow 207 (1), 11, Journal of Experimental Biology,
  4. 4.
    Osborn, A.S.: Questioned Documents, 2nd edn. Boyd Printing Company, New York (1929) (Reprinted Nelson-Hall Co., Chicago)Google Scholar
  5. 5.
    Liu, J., Wang, Z., Zhong, L., Wickramasuriya, J., Vasudevan, V.: uWave: Accelerometer-based Personalized Gesture Recognition and Its Applications. In: Proc. IEEE Int. Conf. Pervasive Computing and Communication, PerCom (2009)Google Scholar
  6. 6.
    Hofmann, F.G., Heyer, P., Hommel, G.: Velocity Profile Based Recognition of Dynamic Gestures with Discrete Hidden Markov Models. In: Proc. Int. Wrkshp. Gesture and Sign Language in Human-Computer Interaction (1997)Google Scholar
  7. 7.
    Jang, I.J., Park, W.B.: Signal Processing of the Accelerometer for Gesture Awareness on Handheld Devices. In: Park, W.B. (ed.) Proc. IEEE Int. Wkshp. Robot and Human Interactive Communication, pp. 139–144 (2003)Google Scholar
  8. 8.
    Kela, J., Korpipää, P., Mäntyjärvi, J., Kallio, S., Savino, G., Jozzo, L., Marca, D.: Accelerometer-based gesture control for a design environment. Personal Ubiquitous Computing 10, 285–299 (2006)CrossRefGoogle Scholar
  9. 9.
    Payne, B.D., Edwards, W.K.: A Brief Introduction to Usable Security. IEEE Internet Computing 12, 13–21 (2008)CrossRefGoogle Scholar
  10. 10.
    Maltoni, D.: Handbook of fingerprint recognition. Springer, Heidelberg (2003)MATHGoogle Scholar
  11. 11.
    Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face recognition: A literature survey. ACM Computing Surveys 35, 399–458 (2003)CrossRefGoogle Scholar
  12. 12.
    Wildes, R.P.: Iris Recognition: an Emerging Biometric Technology. Proc. IEEE 85, 1348–1363 (1997)CrossRefGoogle Scholar
  13. 13.
    Campbell Jr., J.P.: Speaker Recognition: a Tutorial. Proc. of the IEEE 85, 1437–1462 (1997)CrossRefGoogle Scholar
  14. 14.
    Impedovo, D., Pirlo, G.: Automatic signature verification: the state of the art. IEEE Trans. on Systems, Man, and Cybernetics, Part C: Applications and Reviews 38, 609–635 (2008)CrossRefGoogle Scholar
  15. 15.
    Okumura, F., Kubota, A., Hatori, Y., Matsuo, K., Hashimoto, M., Koike, A.: A Study on Biometric Authentication Based on Arm Sweep Action with Acceleration Sensor. In: Proc. Int. Symp. Intelligent Signal Processing and Communications (2006)Google Scholar
  16. 16.
    Farella, E., O’Modhrain, S., Benini, L., Riccó, B.: Gesture Signature for Ambient Intelligence Applications: A Feasibility Study. In: Fishkin, K.P., Schiele, B., Nixon, P., Quigley, A. (eds.) PERVASIVE 2006. LNCS, vol. 3968, pp. 288–304. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Matsuo, K., Okumura, F., Hashimoto, M., Sakazawa, S., Hatori, Y.: Arm Swing Identification Method with Template Update for Long Term Stability. In: Proc. Int. Biometrics (2007)Google Scholar
  18. 18.
    Mantyjarvi, J., Lindholm, M., Vildjiounaite, E., Makela, S.M., Ailisto, H.A.: Identifying Users of Portable Devices from Gait Pattern with Accelerometers. In: Proc. of IEEE Int. Conf. Acoustics, Speech, and Signal Processing (ICASSP), vol. 2, pp. ii/973–ii/976 (2005)Google Scholar
  19. 19.
    Duche, G., Wiiuse, J.:

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2010

Authors and Affiliations

  • Alexandros Zaharis
    • 1
  • Adamantini Martini
    • 1
  • Panayotis Kikiras
    • 1
  • George Stamoulis
    • 1
  1. 1.Department of Computer & Communication EngineeringUniversity of ThessalyVolosGreece

Personalised recommendations