Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

While the bulk material properties treated in Part C of this handbook are obviously important, the surface characteristics of materials are also of great significance. They are responsible for the appearances of materials and surface phenomena, and they have a crucial influence on the interactions of materials with gases or fluids (in corrosion, for example; Chap. 12), contacting solids (as in friction and wear; Chap. 13) or biospecies (Chap. 14), and materials–environment interactions (Chap. 15). Surface and interface characterization have been important topics for very many years. Indeed, it was known in antiquity that impurities could be detrimental to the quality of metals, and that keying and contamination were important to adhesion in architecture and also in the fine arts. In contemporary technologies, surface modification or functional coatings are frequently used to tailor the processing of advanced materials. Some components, such as quantum-well devices and x-ray mirrors, are composed of multilayers with individual layer thicknesses in the low nanometer range. Quality assurance of industrial processes, as well as the development of advanced surface-modified or coated components, requires chemical information on material surfaces and (buried) interfaces with high sensitivity and high lateral and depth resolution. In this chapter we present the methods applicable to the chemical and physical characterization of surfaces and interfaces.

This chapter covers the three main techniques of surface chemical analysis: Auger electron spectroscopy (AES), x-ray photoelectron spectroscopy (XPS), and secondary ion mass spectrometry (SIMS), which are all still rapidly developing in terms of instrumentation, standards, and applications. AES is excellent for elemental analysis at spatial resolutions down to 10 nm, and XPS can define chemical states down to 10 μm. Both analyze the outermost atom layers and, with sputter depth profiling, layers up to 1 μm thick.

Dynamic SIMS incorporates depth profiling and can detect atomic compositions significantly below 1 ppm. Static SIMS retains this high sensitivity for the surface atomic or molecular layer but provides chemistry-related details not available with AES or XPS. New reference data, measurement standards, and documentary standards from ISO will continue to be developed for surface chemical analysis over the coming years.

The chapter also discusses surface physical analysis (topography characterization), which encompasses measurement, visualization, and quantification. This is critical to both component form and surface finish at macro-, micro-, and nanoscales. The principal methods of surface topography measurement are stylus profilometry, optical scanning techniques, and scanning probe microscopy (SPM). These methods, based on acquiring topography data from point-by-point scans, give quantitative information on surface height with respect to position. The integral methods, which are based on a different approach, produce parameters that represent some average property of the surface under examination. Measurement methods, as well as their application and limitations, are briefly reviewed, including standardization and traceability issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AA:

arithmetic average

ACF:

autocorrelation function

ACVF:

autocovariance function

AES:

Auger electron spectroscopy

AFM:

atomic force microscope

AFM:

atomic force microscopy

AMRSF:

average matrix relative sensitivity factor

ASTM:

American Society for Testing and Materials

BCR:

Bureau Communautaire de Référence

CCD:

charge-coupled device

CLA:

center line average

CMM:

coordinate-measuring machine

CRM:

certified reference material

DC:

direct current

DFT:

discrete Fourier transform

DTU:

Danmarks Tekniske Universitet

EBS:

elastic backscattering spectrometry

EPMA:

electron probe microanalysis

FDA:

frequency-domain analysis

FL:

Fermi level

GIXRR:

grazing-incidence x-ray reflectance

HPLC:

high-performance liquid chromatography

IERF:

intensity–energy response function

IMFP:

inelastic mean free path

IPA:

isopropyl alcohol

ISO:

International Organization for Standardization

MEIS:

medium-energy ion scattering

NA:

numerical aperture

NIST:

National Institute of Standards and Technology

NPL:

National Physical Laboratory

NR:

natural rubber

NR:

neutron reflectance

NRA:

nuclear reaction analysis

PC:

personal computer

PC:

photoconductive detector

PC:

polycarbonate

PDMS:

poly(dimethylsiloxane)

PEELS:

parallel electron energy loss spectroscopy

PERSF:

pure element relative sensitivity factor

PET:

polyethylene terephthalate

PMMA:

poly(methyl methacrylate)

PSDF:

power spectral density function

PSI:

phase-shift interferometry

PTB:

Physikalisch-Technische Bundesanstalt

PTFE:

polytetrafluoroethylene

PVC:

polyvinyl chloride

RBS:

Rutherford backscattering

RG:

renormalization group

RMS:

root mean square

RSF:

relative sensitivity factor

SEM:

scanning electron microscopy

SIMS:

secondary ion mass spectrometry

SNOM:

scanning near-field optical microscopy

SPM:

scanning probe microscopy

SPM:

self-phase modulation

SRM:

standard reference material

STM:

scanning tunneling microscopy

SWLI:

scanning white-light interferometry

TEM:

transmission electron microscopy

TOF:

time of flight

TR:

technical report

ULSI:

ultralarge-scale integration

XFL:

photoemitted Fermi level

XPS:

x-ray photoelectron spectroscopy

XPS:

x-ray photoemission spectroscopy

References

  1. I.S. Gilmore, M.P. Seah, J.E. Johnstone: Quantification issues in ToF-SIMS and AFM coanalysis in two-phase systems, exampled by a polymer blend, Surf. Interface Anal. 35, 888 (2003)

    Article  Google Scholar 

  2. ASTM: Annual Book of ASTM Standards, Vol. 03.06 (ASTM, West Conshohocken 2003)

    Google Scholar 

  3. ISO: List of Technical Committees (International Organization for Standardization, Geneva) http://www.iso.org/iso/standards_development/technical_committees/list_of_iso_technical_committees.htmhttp://www.iso.or

  4. NPL: Surface and Nano-Analysis (National Physical Laboratory, Teddington) http://www.npl.co.uk/nanoanalysis

  5. NIST: Surface Data, NIST Scientific and Technical Data Base (NIST, Gaithersburg) http://www.nist.gov/srd/surface.cfm

  6. D. Briggs, M.P. Seah (Eds.): Practical Surface Analysis. Auger and X-ray Photoelectron Spectroscopy, Vol. 1 (Wiley, Chichester 1990)

    Google Scholar 

  7. D. Briggs, M.P. Seah (Eds.): Practical Surface Analysis. Ion and Neutral Spectroscopy, Vol. 2 (Wiley, Chichester 1992)

    Google Scholar 

  8. D. Briggs, J.T. Grant (Eds.): Surface Analysis by Auger and X-ray Photoelectron Spectroscopy (IM Publications and Surface Spectra, Manchester 2003)

    Google Scholar 

  9. S. Morton: UK Surface Analysis Forum http://www.uksaf.org/home.html

  10. Y. Homma: Summary of ISO/TC 201 Standard, II ISO14237:2000 – SCA – Secondary-ion mass spectrometry – Determination of boron atomic concentration in silicon using uniformly doped materials, Surf. Interface Anal. 33, 361 (2002)

    Article  Google Scholar 

  11. K. Kajiwara: Summary of ISO/TC 201 Standard, IV ISO14606:2000 – SCA – Sputter depth profiling – Optimization using layered systems as reference materials, Surf. Interface Anal. 33, 365 (2002)

    Article  Google Scholar 

  12. K. Yoshihara: Summary of ISO/TC 201 Standard, V ISO14975:2000 – SCA – Information formats, Surf. Interface Anal. 33, 367 (2002)

    Article  Google Scholar 

  13. M.P. Seah: Summary of ISO/TC 201 Standard, I ISO14976:1998 – SCA – Data transfer format, Surf. Interface Anal. 27, 693 (1999)

    Article  Google Scholar 

  14. M.P. Seah: Summary of ISO/TC 201 Standard, VII ISO15472:2001 – SCA – X-ray photoelectron spectrometers – Calibration of energy scales, Surf. Interface Anal. 31, 721 (2001)

    Article  Google Scholar 

  15. S. Hofmann: Summary of ISO/TC 201 Standard, IX ISOTR15969:2000 – SCA – Depth profiling – Measurement of sputtered depth, Surf. Interface Anal. 33, 453 (2002)

    Article  Google Scholar 

  16. Y. Homma: Summary of ISO/TC 201 Standard, X ISO17560:2002 – SCA – Secondary-ion mass spectrometry – Method for depth profiling of boron in silicon, Surf. Interface Anal. 37, 90 (2005)

    Article  Google Scholar 

  17. M.P. Seah: Summary of ISO/TC 201 Standard, XII ISO17973:2002 – SCA – Medium-resolution Auger electron spectrometers – Calibration of energy scales for elemental analysis, Surf. Interface Anal. 35, 329 (2002)

    Article  Google Scholar 

  18. M.P. Seah: Summary of ISO/TC 201 Standard, XI ISO17974:2002 – SCA – High-resolution Auger electron spectrometers – Calibration of energy scales for elemental and chemical-state analysis, Surf. Interface Anal. 35, 327 (2003)

    Article  Google Scholar 

  19. D.S. Simons: Summary of ISO/TC 201 Standard: XIII, ISO 18114:2003 – SCA – Secondary-ion mass spectrometry – Determination of relative sensitivity factors from ion-implanted reference materials, Surf. Interface Anal. 38, 171 (2006)

    Article  Google Scholar 

  20. M.P. Seah: Summary of ISO/TC 201 Standard, VIII ISO18115:2001 – SCA – Vocabulary, Surf. Interface Anal. 31, 1048 (2001)

    Article  Google Scholar 

  21. M.P. Seah: Summary of ISO/TC 201 Standard: XXVIII, ISO 18115:2001/Amd.1:2006 – SCA – Vocabulary – Amendment 1, Surf. Interface Anal. 39, 367 (2007)

    Article  Google Scholar 

  22. M.P. Seah: Summary of ISO/TC 201 Standard: XXXIII, ISO 18115:2001/Amd.2:2007 – SCA – Vocabulary – Amendment 2, Surf. Interface Anal. 40, 1500 (2008)

    Article  Google Scholar 

  23. S. Tanuma: Summary of ISO/TC 201 Standard: XX, ISO 18118:2004 – SCA – Auger electron spectroscopy and x-ray photoelectron spectroscopy – Guide to the use of experimentally determined relative sensitivity factors for the quantitative analysis of homogeneous materials, Surf. Interface Anal. 38, 178 (2006)

    Article  Google Scholar 

  24. L. Kövér: Summary of ISO/TC 201 Standard: XXV, ISO 18392:2005 – SCA – X-ray photoelectron spectroscopy –procedures for determining backgrounds, Surf. Interface Anal. 38, 1173 (2006)

    Article  Google Scholar 

  25. L. Kövér: Summary of ISO/TC 201 Standard: XXX, ISO TR 18394:2006 – SCA – Auger electron spectroscopy – Derivation of chemical information, Surf. Interface Anal. 39, 556 (2007)

    Article  Google Scholar 

  26. J. Wolstenholme: Summary of ISO/TC 201 Standard: XXXI, ISO 18516:2006 – SCA – Auger electron spectroscopy and x-ray photoelectron spectroscopy – Determination of lateral resolution, Surf. Interface Anal. 40, 966 (2008)

    Article  Google Scholar 

  27. D.R. Baer: Summary of ISO/TC 201 Standard: XVIII, ISO 19318:2004 – SCA – X-ray photoelectron spectroscopy – Reporting of methods used for charge control and charge correction, Surf. Interface Anal. 37, 524 (2005)

    Article  Google Scholar 

  28. C.J. Powell: Summary of ISO/TC 201 Standard, XIV ISOTR19319:2003 – SCA – Auger electron spectroscopy and x-ray photoelectron spectroscopy – Determination of lateral resolution, analysis area, and sample area viewed by the analyser, Surf. Interface Anal. 36, 666 (2004)

    Article  Google Scholar 

  29. D.W. Moon: Summary of ISO/TC 201 Standard, XV ISO20341:2003 – SCA – Secondary-ion mass spectrometry – Method for estimating depth resolution parameters with multiple delta-layer reference materials, Surf. Interface Anal. 37, 646 (2005)

    Article  Google Scholar 

  30. C.J. Powell: Summary of ISO/TC 201 Standard: XXIX, ISO 20903:2006 – SCA – Auger electron spectroscopy and x-ray photoelectron spectroscopy – Methods used to determine peak intensities and information required when reporting results, Surf. Interface Anal. 39, 464 (2007)

    Article  Google Scholar 

  31. M.P. Seah: Summary of ISO/TC 201 Standard, XXI. ISO21270:2004 – SCA – X-ray photoelectron and Auger electron spectrometers – Linearity of intensity scale, Surf. Interface Anal. 36, 1645 (2004)

    Article  Google Scholar 

  32. I.S. Gilmore, M.P. Seah, A. Henderson: Summary of ISO/TC 201 Standard, XXII ISO22048:2004 – SCA – Information format for static secondary ion mass spectrometry, Surf. Interface Anal. 36, 1642 (2004)

    Article  Google Scholar 

  33. M.P. Seah: Summary of ISO/TC 201 Standard: XXIII, ISO 24236:2005 – SCA – Auger electron spectroscopy – Repeatability and constancy of intensity scale, Surf. Interface Anal. 39, 86 (2007)

    Article  Google Scholar 

  34. M.P. Seah: Summary of ISO/TC 201 Standard: XXIV, ISO 24237:2005 – SCA – X-ray photoelectron spectroscopy – Repeatability and constancy of intensity scale, Surf. Interface Anal. 39, 370 (2007)

    Article  Google Scholar 

  35. M.P. Seah, W.A. Dench: Quantitative electron spectroscopy of surfaces – A standard data base for electron inelastic mean free paths in solids, Surf. Interface Anal. 1, 2 (1979)

    Article  Google Scholar 

  36. C.P. Hunt, M.P. Seah: A submonolayer adsorbate reference material based on a low alloy steel fracture sample for Auger electron spectroscopy, I: Characterisation, Mater. Sci. Technol. 8, 1023 (1992)

    Article  Google Scholar 

  37. A. Savitzky, M.J.E. Golay: Smoothing and differentiation of data by simplified least squares procedures, Anal. Chem. 36, 1627 (1964)

    Article  Google Scholar 

  38. J. Steiner, Y. Termonia, J. Deltour: Comments on Smoothing and differentiation of data by simplified least squares procedures, Anal. Chem. 44, 1906 (1972)

    Article  Google Scholar 

  39. L.E. Davis, N.C. MacDonald, P.W. Palmberg, G.E. Riach, R.E. Weber: Handbook of Auger Electron Spectroscopy, 2nd edn. (Physical Electronics Industries, Eden Prairie 1976)

    Google Scholar 

  40. G.E. McGuire: Auger Electron Spectroscopy Reference Manual (Plenum, New York 1979)

    Book  Google Scholar 

  41. Y. Shiokawa, T. Isida, Y. Hayashi: Auger Electron Spectra Catalogue: A Data Collection of Elements (Anelva, Tokyo 1979)

    Google Scholar 

  42. T. Sekine, Y. Nagasawa, M. Kudoh, Y. Sakai, A.S. Parkes, J.D. Geller, A. Mogami, K. Hirata: Handbook of Auger Electron Spectroscopy (JEOL, Tokyo 1982)

    Google Scholar 

  43. K.D. Childs, B.A. Carlson, L.A. Lavanier, J.F. Moulder, D.F. Paul, W.F. Stickle, D.G. Watson: Handbook of Auger Electron Spectroscopy (Physical Electronics Industries, Eden Prairie 1995)

    Google Scholar 

  44. M.P. Seah, I.S. Gilmore, H.E. Bishop, G. Lorang: Quantitative AES V, Practical analysis of intensities with detailed examples of metals and their oxides, Surf. Interface Anal. 26, 701 (1998)

    Article  Google Scholar 

  45. M.P. Seah, C.P. Hunt: Atomic mixing and electron range effects in ultra high resolution profiles of the Ta/Ta2O5 interface by argon sputtering with AES, J. Appl. Phys. 56, 2106 (1984)

    Article  Google Scholar 

  46. J. Pauwels: Institute of Reference Materials and Measurements (IRMM), Retieseweg, 2440 Geel, Belgium

    Google Scholar 

  47. C.P. Hunt, M.P. Seah: Characterisation of high depth resolution tantalum pentoxide sputter profiling reference material, Surf. Interface Anal. 5, 199 (1983)

    Article  Google Scholar 

  48. M.P. Seah, S.J. Spencer, I.S. Gilmore, J.E. Johnstone: Depth resolution in sputter depth profiling – Characterisation of a tantalum pentoxide on tantalum certified reference material, Surf. Interface Anal. 29, 73 (2000)

    Article  Google Scholar 

  49. M.P. Seah, S.J. Spencer: Ultra-thin SiO2 on Si, I: Quantifying and removing carbonaceous contamination, J. Vac. Sci. Technol. A 21, 345 (2003)

    Article  Google Scholar 

  50. M.P. Seah, G.C. Smith, M.T. Anthony: AES – Energy calibration of electron spectrometers. I: An absolute, traceable energy calibration and the provision of atomic reference line energies, Surf. Interface Anal. 15, 293 (1990)

    Article  Google Scholar 

  51. M.P. Seah, I.S. Gilmore: AES – Energy calibration of electron spectrometers. III: General calibration rules, J. Electron Spectrosc. 83, 197 (1997)

    Article  Google Scholar 

  52. M.P. Seah: AES – energy calibration of electron spectrometers. IV: A re-evaluation of the reference energies, J. Electron Spectrosc. 97, 235 (1998)

    Article  Google Scholar 

  53. M.P. Seah, G.C. Smith: Spectrometer energy scale calibration. In: Practical Surface Analysis. Auger and X-ray Photoelectron Spectroscopy, Vol. 1, ed. by D. Briggs, M.P. Seah (Wiley, Chichester 1990) p. 531, Appendix 1

    Google Scholar 

  54. P.J. Cumpson, M.P. Seah, S.J. Spencer: Simple procedure for precise peak maximum estimation for energy calibration in AES and XPS, Surf. Interface Anal. 24, 687 (1996)

    Article  Google Scholar 

  55. M.P. Seah: Channel electron multipliers: Quantitative intensity measurement – Efficiency, gain, linearity and bias effects, J. Electron Spectrosc. 50, 137 (1990)

    Article  Google Scholar 

  56. M.P. Seah, C.S. Lim, K.L. Tong: Channel electron multiplier efficiencies – The effect of the pulse-height distribution on spectrum shape in Auger electron spectroscopy, J. Electron Spectrosc. 48, 209 (1989)

    Article  Google Scholar 

  57. M.P. Seah, M. Tosa: Linearity in electron counting and detection systems, Surf. Interface Anal. 18, 240 (1992)

    Article  Google Scholar 

  58. M.P. Seah: Effective dead time in pulse counting systems, Surf. Interface Anal. 23, 729 (1995)

    Article  Google Scholar 

  59. M.P. Seah, I.S. Gilmore, S.J. Spencer: Signal linearity in XPS counting systems, J. Electron Spectrosc. 104, 73 (1999)

    Article  Google Scholar 

  60. M.P. Seah, I.S. Gilmore, S.J. Spencer: Method for determining the signal linearity in single and multidetector counting systems in XPS, Appl. Surf. Sci. 144/145, 132 (1999)

    Article  Google Scholar 

  61. M.P. Seah, G.C. Smith: AES – Accurate intensity calibration of spectrometers – Results of a BCR interlaboratory comparison cosponsored by the VAMAS SCA TWP, Surf. Interface Anal. 17, 855 (1991)

    Article  Google Scholar 

  62. M.P. Seah: A system for the intensity calibration of electron spectrometers, J. Electron Spectrosc. 71, 191 (1995)

    Article  Google Scholar 

  63. M.P. Seah: XPS – Reference procedures for the accurate intensity calibration of electron spectrometers – Results of a BCR intercomparison cosponsored by the VAMAS SCA TWP, Surf. Interface Anal. 20, 243 (1993)

    Article  Google Scholar 

  64. M.P. Seah, G.C. Smith: Quantitative AES and XPS determination of the electron spectrometer transmission function and the detector sensitivity energy dependencies for the production of true electron emission spectra in AES and XPS, Surf. Interface Anal. 15, 751 (1990)

    Article  Google Scholar 

  65. NPL: Systems for the Intensity Calibration of Auger and X-ray Photoelectron Spectrometers, A1 and X1 (National Physical Laboratory, Teddington 2005), see http://www.npl.co.uk/nanoanalysis/a1calib.html and follow links

    Google Scholar 

  66. M.P. Seah: Scattering in electron spectrometers, diagnosis and avoidance. I: Concentric hemispherical analysers, Surf. Interface Anal. 20, 865 (1993)

    Article  Google Scholar 

  67. S. Tougaard: X-ray photoelectron spectroscopy peak shape analysis for the extraction of in-depth composition information, J. Vac. Sci. Technol. A 5, 1275 (1987)

    Article  Google Scholar 

  68. S. Tougaard, C. Jannsson: Comparison of validity and consistency of methods for quantitative XPS peak analysis, Surf. Interface Anal. 20, 1013 (1993)

    Article  Google Scholar 

  69. M.P. Seah: Data compilations – Their use to improve measurement certainty in surface analysis by AES and XPS, Surf. Interface Anal. 9, 85 (1986)

    Article  Google Scholar 

  70. M.P. Seah: Quantitative AES and XPS. In: Practical Surface Analysis. Auger and X-ray Photoelectron Spectroscopy, Vol. 1, ed. by D. Briggs, M.P. Seah (Wiley, Chichester 1990) p. 201, Chap. 5

    Google Scholar 

  71. M. Gryzinski: Classical theory of atomic collisions. I: Theory of inelastic collisions, Phys. Rev. A 138, 336 (1965)

    Article  Google Scholar 

  72. M.P. Seah, I.S. Gilmore: Quantitative AES. VII: The ionisation cross section in AES, Surf. Interface Anal. 26, 815 (1998)

    Article  Google Scholar 

  73. E. Casnati, A. Tartari, C. Baraldi: An empirical approach to K-shell ionization cross section by electrons, J. Phys. B 15, 155 (1982)

    Article  Google Scholar 

  74. E.H.S. Burhop: The Auger Effect and Other Radiationless Transitions (Cambridge Univ. Press, Cambridge 1952)

    Google Scholar 

  75. J.I. Goldstein, H. Yakowitz (Eds.): Practical Scanning Electron Microscopy (Plenum, New York 1975)

    Google Scholar 

  76. M.P. Seah, I.S. Gilmore: A high resolution digital Auger database of true spectra for AES intensities, J. Vac. Sci. Technol. A 14, 1401 (1996)

    Article  Google Scholar 

  77. R. Shimizu: Quantitative analysis by Auger electron spectroscopy, Jpn. J. Appl. Phys. 22, 1631 (1983)

    Article  Google Scholar 

  78. M.P. Seah, I.S. Gilmore: Quantitative AES. VIII: Analysis of Auger electron intensities for elemental data in a digital auger database, Surf. Interface Anal. 26, 908 (1998)

    Article  Google Scholar 

  79. G.W.C. Kaye, T.H. Laby: Tables of Physical and Chemical Constants, 15th edn. (Longmans, London 1986)

    Google Scholar 

  80. D.R. Lide (Ed.): CRC Handbook of Chemistry and Physics, 74th edn. (CRC, Boca Raton 1993)

    Google Scholar 

  81. A. Jablonski: Database of correction parameters for elastic scattering effects in XPS, Surf. Interface Anal. 23, 29 (1995)

    Article  Google Scholar 

  82. M.P. Seah, I.S. Gilmore: Simplified equations for correction parameters for elastic scattering effects for Q, β and attenuation lengths in AES and XPS, Surf. Interface Anal. 31, 835 (2001)

    Article  Google Scholar 

  83. S. Tanuma, C.J. Powell, D.R. Penn: Calculations of electron inelastic mean free paths (IMFPs). V: Data for 14 organic compounds over the 50–2000 eV range, Surf. Interface Anal. 21, 165 (1994)

    Article  Google Scholar 

  84. S. Tanuma, C.J. Powell, D.R. Penn: Calculations of electron inelastic mean free paths. VII: Reliability of the TPP-2M IMFP predictive equation, Surf. Interface Anal. 35, 268 (2003)

    Article  Google Scholar 

  85. NIST: SRD 71 Electron Inelastic Mean Free Path Database, Version 1.1 (NIST, Gaithersburg 2001)

    Google Scholar 

  86. M.P. Seah, I.S. Gilmore, S.J. Spencer: Quantitative XPS. I: Analysis of x-ray photoelectron intensities from elemental data in a digital photoelectron database, J. Electron. Spectrosc. 120, 93 (2001)

    Article  Google Scholar 

  87. P.J. Cumpson: Angle-resolved x-ray photoelectron spectroscopy. In: Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, ed. by D. Briggs, J.T. Grant (IM Publications and Surface Spectra, Manchester 2003) p. 651, Chap. 23

    Google Scholar 

  88. S. Tougaard: Quantification of nanostructures by electron spectroscopy. In: Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, ed. by D. Briggs, J.T. Grant (IM Publications and Surface Spectra, Manchester 2003) p. 295, Chap. 12

    Google Scholar 

  89. S. Hofmann, J.M. Sanz: Quantitative XPS analysis of the surface layer of anodic oxides obtained during depth profiling by sputtering with 3 keV Ar+ ions, J. Trace Microprobe Tech. 1, 213 (1982)

    Google Scholar 

  90. S. Hofmann: Depth profiling in AES and XPS. In: Practical Surface Analysis. Auger and X-ray Photoelectron Spectroscopy, Vol. 1, ed. by D. Briggs, M.P. Seah (Wiley, Chichester 1990) p. 143, Chap. 4

    Google Scholar 

  91. J.M. Sanz, S. Hofmann: Quantitative evaluation of AES-depth profiles of thin anodic oxide films (Ta2O5/Ta, Nb2O5/Nb), Surf. Interface Anal. 5, 210 (1983)

    Article  Google Scholar 

  92. J.F. Ziegler: The Stopping and Range of Ions in Matter SRIM-2003, SRIM-2003 v.02 SRIM code (IBM, Yorktown Heights 2005), available for download from http://www.SRIM.org

    Google Scholar 

  93. M.P. Seah, F.M. Green, C.A. Clifford, I.S. Gilmore: An accurate semi-empirical equation for sputtering yields. I: For argon ions, Surf. Interface Anal. 37, 444 (2005)

    Article  Google Scholar 

  94. O. Auciello, R. Kelly (Eds.): Ion Bombardment Modifications of Surfaces (Elsevier, Amsterdam 1984)

    Google Scholar 

  95. R. Kelly: On the role of Gibbsian segregation in causing preferential sputtering, Surf. Interface Anal. 7, 1 (1985)

    Article  Google Scholar 

  96. J.B. Malherbe, R.Q. Odendaal: Models for the sputter correction factor in quantitative AES for compound semiconductors, Surf. Interface Anal. 26, 841 (1998)

    Article  Google Scholar 

  97. T. Wagner, J.Y. Wang, S. Hofmann: Sputter depth profiling in AES and XPS. In: Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, ed. by D. Briggs, J.T. Grant (IM Publications and Surface Spectra, Manchester 2003) p. 619, Chap. 22

    Google Scholar 

  98. M.P. Seah, C.P. Hunt: The depth dependence of the depth resolution in composition-depth profiling with auger electron spectroscopy, Surf. Interface Anal. 5, 33 (1983)

    Article  Google Scholar 

  99. M.P. Seah, J.M. Sanz, S. Hofmann: The statistical sputtering contribution to resolution in concentration-depth profiles, Thin Solid Films 81, 239 (1981)

    Article  Google Scholar 

  100. NPL: Sputtering Yields for Neon, Argon and Xenon Ions (National Physical Laboratory, Teddington 2005), available for download from http://www.npl.co.uk/nanoscience/surfacenanoanalysis/products-and-services/sputter-yield-values

    Google Scholar 

  101. A. Zalar: Improved depth resolution by sample rotation during Auger electron spectroscopy depth profiling, Thin Solid Films 124, 223 (1985)

    Article  Google Scholar 

  102. S. Hofmann, A. Zalar, E.-H. Cirlin, J.J. Vajo, H.J. Mathieu, P. Panjan: Interlaboratory comparison of the depth resolution in sputter depth profiling of Ni/Cr multilayers with and without sample rotation using AES, XPS, and SIMS, Surf. Interface Anal. 20, 621 (1993)

    Article  Google Scholar 

  103. C.P. Hunt, M.P. Seah: Method for the alignment of samples and the attainment of ultra-high resolution depth profiles in Auger electron spectroscopy, Surf. Interface Anal. 15, 254 (1990)

    Article  Google Scholar 

  104. M.P. Seah: An accurate semi-empirical equation for sputtering yields. II: For neon, argon and xenon ions, Nucl. Instrum. Methods B 229, 348 (2005)

    Article  Google Scholar 

  105. I.S. Gilmore, M.P. Seah: Fluence, flux, current, and current density measurement in faraday cups for surface analysis, Surf. Interface Anal. 23, 248 (1995)

    Article  Google Scholar 

  106. J.A. Bearden, A.F. Burr: X-ray wavelengths and x-ray atomic energy levels, Rev. Mod. Phys. 31, 49 (1967)

    Google Scholar 

  107. C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, G.E. Muilenberg: Handbook of X-ray Photoelectron Spectroscopy (Physical Electrons Industries, Eden Prairie 1979)

    Google Scholar 

  108. N. Ikeo, Y. Iijima, N. Niimura, M. Sigematsu, T. Tazawa, S. Matsumoto, K. Kojima, Y. Nagasawa: Handbook of X-ray Photoelectron Spectroscopy (JEOL, Tokyo 1991)

    Google Scholar 

  109. J.F. Moulder, W.F. Stickle, S.E. Sobol, K.D. Bomben: Handbook of X-ray Photoelectron Spectroscopy (Perkin Elmer/Physical Electronics Division, Eden Prairie 1992)

    Google Scholar 

  110. C.D. Wagner: Photoelectron and Auger energies and the Auger parameter – A data set. In: Practical Surface Analysis. Auger and X-ray Photoelectron Spectroscopy, Vol. 1, ed. by D. Briggs, M.P. Seah (Wiley, Chichester 1990) p. 595, Appendix 5

    Google Scholar 

  111. C.D. Wagner, A.V. Naumkin, A. Kraut-Vass, J.W. Allison, C.J. Powell, J.R. Rumble: NIST XPS Database (NIST, Gaithersburg 2005), http://srdata.nist.gov/xps/

    Google Scholar 

  112. M.P. Seah: Post-1989 calibration energies for x-ray photoelectron spectrometers and the 1990 Josephson constant, Surf. Interface Anal. 14, 488 (1989)

    Article  Google Scholar 

  113. M.P. Seah, I.S. Gilmore, S.J. Spencer: XPS – Energy calibration of electron spectrometers 4 – An assessment of effects for different conditions and of the overall uncertainties, Surf. Interface Anal. 26, 617 (1998)

    Article  Google Scholar 

  114. M.P. Seah, I.S. Gilmore, G. Beamson: XPS – Binding energy calibration of electron spectrometers 5 – A re-assessment of the reference energies, Surf. Interface Anal. 26, 642 (1998)

    Article  Google Scholar 

  115. G. Beamson, D. Briggs: High-Resolution XPS of Organic Polymers – The Scienta ESCA300 Database (Wiley, Chichester 1992)

    Google Scholar 

  116. M.P. Seah, S.J. Spencer: Degradation of poly(vinyl chloride) and nitrocellulose in XPS, Surf. Interface Anal. 35, 906 (2003)

    Article  Google Scholar 

  117. ISO 17025: ISO: General Requirements for the Competence of Testing and Calibration Laboratories (ISO, Geneva 2000)

    Google Scholar 

  118. D.A. Shirley: High-resolution x-ray photoemission spectrum of the valence bands of gold, Phys. Rev. B 5, 4709 (1972)

    Article  Google Scholar 

  119. C.D. Wagner: Empirically derived atomic sensitivity factors for XPS. In: Practical Surface Analysis. Auger and X-ray Photoelectron Spectroscopy, Vol. 1, ed. by D. Briggs, M.P. Seah (Wiley, Chichester 1990) p. 635, Appendix 6

    Google Scholar 

  120. C.D. Wagner, L.E. Davis, M.V. Zeller, J.A. Taylor, R.M. Raymond, L.H. Gale: Empirical atomic sensitivity factors for quantitative analysis by electron spectroscopy for chemical analysis, Surf. Interface Anal. 3, 211 (1981)

    Article  Google Scholar 

  121. J.H. Scofield: Hartree–Slater subshell photoionization cross-sections at 1254 and 1487 eV, J. Electron Spectrosc. 8, 129 (1996)

    Article  Google Scholar 

  122. M.P. Seah, I.S. Gilmore, S.J. Spencer: Quantitative AES IX and quantitative XPS II: Auger and x-ray photoelectron intensities from elemental spectra in digital databases reanalysed with a REELS database, Surf. Interface Anal. 31, 778 (2001)

    Article  Google Scholar 

  123. J.J. Yeh, I. Lindau: Atomic subshell photoionization cross sections and asymmetry parameters: 1 ≤ Z ≤ 103, At. Data Nucl. Data Tables 32, 1 (1985)

    Article  Google Scholar 

  124. R.F. Reilman, A. Msezane, S.T. Manson: Relative intensities in photoelectron spectroscopy of atoms and molecules, J. Electron Spectrosc. 8, 389 (1970)

    Article  Google Scholar 

  125. M.P. Seah: Quantification in AES and XPS. In: Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, ed. by D. Briggs, J.T. Grant (IM Publications Surface Spectra, Manchester 2003) p. 345, Chap. 13

    Google Scholar 

  126. NIST: SRD 64 Electron Elastic Scattering Cross-Section Database (NIST, Gaithersburg 2002), Version 2.0

    Google Scholar 

  127. P.J. Cumpson, M.P. Seah: Elastic scattering corrections in AES and XPS II – Estimating attenuation lengths, and conditions required for their valid use in overlayer/substrate experiments, Surf. Interface Anal. 25, 430 (1997)

    Article  Google Scholar 

  128. A. Jablonski, C.J. Powell: The electron attenuation length revisited, Surf. Sci. Rep. 47, 33 (2002)

    Article  Google Scholar 

  129. P.J. Cumpson: The thickogram: A method for easy film thickness measurements in XPS, Surf. Interface Anal. 29, 403 (2000)

    Article  Google Scholar 

  130. M.P. Seah, S.J. Spencer, F. Bensebaa, I. Vickridge, H. Danzebrink, M. Krumrey, T. Gross, W. Oesterle, E. Wendler, B. Rheinländer, Y. Azuma, I. Kojima, N. Suzuki, M. Suzuki, S. Tanuma, D.W. Moon, H.J. Lee, M.C. Hyun, H.Y. Chen, A.T.S. Wee, T. Osipowicz, J.S. Pan, W.A. Jordaan, R. Hauert, U. Klotz, C. van der Marel, M. Verheijen, Y. Tamminga, C. Jeynes, P. Bailey, S. Biswas, U. Falke, N.V. Nguyen, D. Chandler-Horowitz, J.R. Ehrstein, D. Muller, J.A. Dura: Critical review of the current status of thickness measurements for ultra-thin SiO2 on Si: Part V Results of a CCQM pilot study, Surf. Interface Anal. 36, 1269 (2004)

    Article  Google Scholar 

  131. M.P. Seah: Intercomparison of silicon dioxide thickness measurements made by multiple techniques – The route to accuracy, J. Vac. Sci. Technol. A 22, 1564 (2004)

    Article  Google Scholar 

  132. M.P. Seah, S.J. Spencer: Ultra-thin SiO2 on Si, II: Issues in quantification of the oxide thickness, Surf. Interface Anal. 33, 640 (2002)

    Article  Google Scholar 

  133. M.P. Seah, S.J. Spencer: Ultra-thin SiO2 on Si, IV: Thickness linearity and intensity measurement in XPS, Surf. Interface Anal. 35, 515 (2003)

    Article  Google Scholar 

  134. M.P. Seah, S.J. Spencer: Ultrathin SiO2 on Si, VII: Angular accuracy in XPS and an accurate attenuation length, Surf. Interface Anal. 37, 731 (2005)

    Article  Google Scholar 

  135. M.P. Seah, S.J. Spencer: Attenuation lengths in organic materials, Surf. Interface Anal. 43, 744 (2011)

    Article  Google Scholar 

  136. N. Sanada, Y. Yamamoto, R. Oiwa, Y. Ohashi: Extremely low sputtering degradation of polytetrafluoroethylene by C60 ion beam applied in XPS analysis, Surf. Interface Anal. 36, 280 (2004)

    Article  Google Scholar 

  137. T. Miyayama, N. Sanada, M. Suzuki, J.S. Hammond, S.-Q.D. Si, A. Takahara: X-ray photoelectron spectroscopy study of polyimide thin films with Ar cluster ion depth profiling, J. Vac. Sci. Technol. A 28, L1 (2010)

    Article  Google Scholar 

  138. A.G. Shard, F.M. Green, P.J. Brewer, M.P. Seah, I.S. Gilmore: Quantitative molecular depth profiling of organic delta-layers by C60 ion sputtering and SIMS, J. Phys. Chem. B 112, 2596 (2008)

    Article  Google Scholar 

  139. K. Wittmaack: Physical and chemical parameters determining ion yields in SIMS analyses: A closer look at the oxygen-induced yield enhancement effect, Proc. 11st Int. Conf. Second. Ion Mass Spectrom., SIMS XI, ed. by G. Gillen, R. Lareau, J. Bennett, F. Stevie (Wiley, Chichester 1998) p. 11

    Google Scholar 

  140. C.J. Hitzman, G. Mount: Enhanced depth profiling of ultra-shallow implants using improved low energy ion guns on a quadrupole SIMS instrument, Proc. 11st Int. Conf. Second. Ion Mass Spectrom., SIMS XI, ed. by G. Gillen, R. Lareau, J. Bennett, F. Stevie (Wiley, Chichester 1998) p. 273

    Google Scholar 

  141. I.S. Gilmore: Private communication (2004)

    Google Scholar 

  142. M.G. Dowsett, G. Rowland, P.N. Allen, R.D. Barlow: An analytic form for the SIMS response function measured from ultra-thin impurity layers, Surf. Interface Anal. 21, 310 (1994)

    Article  Google Scholar 

  143. D.W. Moon, J.Y. Won, K.J. Kim, H.J. Kang, M. Petravic: GaAs delta-doped layers in Si for evaluation of SIMS depth resolution, Surf. Interface Anal. 29, 362 (2000)

    Article  Google Scholar 

  144. M.G. Dowsett: Depth profiling using ultra-low-energy secondary ion mass spectrometry, Appl. Surf. Sci. 203/204, 5 (2003)

    Article  Google Scholar 

  145. K. Wittmaack: The ``Normal Componentʼʼ of the primary ion energy: An inadequate parameter for assessing the depth resolution in SIMS, Proc. 11st Int. Conf. Second. Ion Mass Spectrom., SIMS XII, ed. by A. Benninghoven, P. Bertrand, H.-N. Migeon, H.W. Werner (Wiley, Chichester 2000) p. 569

    Google Scholar 

  146. J. Bellingham, M.G. Dowsett, E. Collart, D. Kirkwood: Quantitative analysis of the top 5 nm of boron ultra-shallow implants, Appl. Surf. Sci. 203/204, 851 (2003)

    Article  Google Scholar 

  147. K. Iltgen, A. Benninghoven, E. Niehius: TOF-SIMS depth profiling with optimized depth resolution, Proc. 11st Int. Conf. Second. Ion Mass Spectrom., SIMS XI, ed. by G. Gillen, R. Lareau, J. Bennett, F. Stevie (Wiley, Chichester 1988) p. 367

    Google Scholar 

  148. C. Hongo, M. Tomita, M. Takenaka, M. Suzuki, A. Murakoshi: Depth profiling for ultrashallow implants using backside secondary ion mass spectrometry, J. Vac. Sci. Technol. B 21, 1422 (2003)

    Article  Google Scholar 

  149. J. Sameshima, R. Maeda, K. Yamada, A. Karen, S. Yamada: Depth profiles of boron and nitrogen in SiON films by backside SIMS, Appl. Surf. Sci. 231/232, 614 (2004)

    Article  Google Scholar 

  150. F. Laugier, J.M. Hartmann, H. Moriceau, P. Holliger, R. Truche, J.C. Dupuy: Backside and frontside depth profiling of B delta doping, at low energy, using new and previous magnetic SIMS instruments, Appl. Surf. Sci. 231/232, 668 (2004)

    Article  Google Scholar 

  151. D.W. Moon, H.J. Lee: The dose dependence of Si sputtering with low energy ions in shallow depth profiling, Appl. Surf. Sci. 203/204, 27 (2003)

    Article  Google Scholar 

  152. K. Wittmaack: Influence of the depth calibration procedure on the apparent shift of impurity depth profiles measured under conditions of long-term changes in erosion rate, J. Vac. Sci. Technol. B 18, 1 (2001)

    Article  Google Scholar 

  153. Y. Homma, H. Takenaka, F. Toujou, A. Takano, S. Hayashi, R. Shimizu: Evaluation of the sputter rate variation in SIMS ultra-shallow depth profiling using multiple short-period delta-layers, Surf. Interface Anal. 35, 544 (2003)

    Article  Google Scholar 

  154. F. Toujou, S. Yoshikawa, Y. Homma, A. Takano, H. Takenaka, M. Tomita, Z. Li, T. Hasgawa, K. Sasakawa, M. Schuhmacher, A. Merkulov, H.K. Kim, D.W. Moon, T. Hong, J.-Y. Won: Evaluation of BN-delta-doped multilayer reference materials for shallow depth profiling in SIMS: Round robin test, Appl. Surf. Sci. 231/232, 649 (2004)

    Article  Google Scholar 

  155. F.A. Stevie, P.M. Kahora, D.S. Simons, P. Chi: Secondary ion yield changes in Si and GaAs due to topography changes during O2+ or Cs+ ion bombardment, J. Vac. Sci. Technol. A 6, 76 (1988)

    Article  Google Scholar 

  156. Y. Homma, A. Takano, Y. Higashi: Oxygen-ion-induced ripple formation on silicon: Evidence for phase separation and tentative model, Appl. Surf. Sci. 203/204, 35 (2003)

    Article  Google Scholar 

  157. K. Wittmaack: Artifacts in low-energy depth profiling using oxygen primary ion beams: Dependence on impact angle and oxygen flooding conditions, J. Vac. Sci. Technol. B 16, 2776 (1998)

    Article  Google Scholar 

  158. Z.X. Jiang, P.F.K. Alkemade: Erosion rate change and surface roughening in Si during oblique O2+ bombardment with oxygen flooding, Proc. 11st Int. Conf. Second. Ion Mass Spectrom., SIMS XI, ed. by G. Gillen, R. Lareau, J. Bennett, F. Stevie (Wiley, Chichester 1998) p. 431

    Google Scholar 

  159. K. Kataoka, K. Yamazaki, M. Shigeno, Y. Tada, K. Wittmaack: Surface roughening of silicon under ultra-low-energy cesium bombardment, Appl. Surf. Sci. 203/204, 43 (2003)

    Article  Google Scholar 

  160. K. Wittmaack: Concentration-depth calibration and bombardment-induced impurity relocation in SIMS depth profiling of shallow through-oxide implantation distributions: A procedure for eliminating the matrix effect, Surf. Interface Anal. 26, 290 (1998)

    Article  Google Scholar 

  161. M.G. Dowsett, J.H. Kelly, G. Rowlands, T.J. Ormsby, B. Guzman, P. Augustus, R. Beanland: On determining accurate positions, separations, and internal profiles for delta layers, Appl. Surf. Sci. 203/204, 273 (2003)

    Article  Google Scholar 

  162. J.B. Clegg, A.E. Morgan, H.A.M. De Grefte, F. Simondet, A. Huebar, G. Blackmore, M.G. Dowsett, D.E. Sykes, C.W. Magee, V.R. Deline: A comparative study of SIMS depth profiling of boron in silicon, Surf. Interface Anal. 6, 162 (1984)

    Article  Google Scholar 

  163. J.B. Clegg, I.G. Gale, G. Blackmore, M.G. Dowsett, D.S. McPhail, G.D.T. Spiller, D.E. Sykes: A SIMS calibration exercise using multi-element (Cr, Fe and Zn) implanted GaAs, Surf. Interface Anal. 10, 338 (1987)

    Article  Google Scholar 

  164. K. Miethe, E.H. Cirlin: An international round robin exercise on SIMS depth profiling of silicon delta-doped layers in GaAs, Proc. 9th Int. Conf. Second. Ion Mass Spectrom., SIMS IX, ed. by A. Benninghoven, Y. Nihei, R. Shimizu, H.W. Werner (Wiley, Chichester 1994) p. 699

    Google Scholar 

  165. Y. Okamoto, Y. Homma, S. Hayashi, F. Toujou, N. Isomura, A. Mikami, I. Nomachi, S. Seo, M. Tomita, A. Tamamoto, S. Ichikawa, Y. Kawashima, R. Mimori, Y. Mitsuoka, I. Tachikawa, T. Toyoda, Y. Ueki: SIMS round-robin study of depth profiling of boron implants in silicon, Proc. 11st Int. Conf. Second. Ion Mass Spectrom., SIMS XI, ed. by G. Gillen, R. Lareau, J. Bennett, F. Stevie (Wiley, Chichester 1998) p. 1047

    Google Scholar 

  166. F. Toujou, M. Tomita, A. Takano, Y. Okamoto, S. Hayashi, A. Yamamoto, Y. Homma: SIMS round-robin study of depth profiling of boron implants in silicon, II Problems of quantification in high concentration B profiles, Proc. 12nd Int. Conf. Second. Ion Mass Spectrom., SIMS XII, ed. by A. Benninghoven, P. Bertrand, H.-N. Migeon, H.W. Werner (Wiley, Chichester 2000) p. 101

    Google Scholar 

  167. M. Tomita, T. Hasegawa, S. Hashimoto, S. Hayashi, Y. Homma, S. Kakehashi, Y. Kazama, K. Koezuka, H. Kuroki, K. Kusama, Z. Li, S. Miwa, S. Miyaki, Y. Okamoto, K. Okuno, S. Saito, S. Sasaki, H. Shichi, H. Shinohara, F. Toujou, Y. Ueki, Y. Yamamoto: SIMS round-robin study of depth profiling of arsenic implants in silicon, Appl. Surf. Sci. 203/204, 465 (2003)

    Article  Google Scholar 

  168. I.S. Gilmore, M.P. Seah: Static SIMS: A study of damage using polymers, Surf. Interface Anal. 24, 746 (1996)

    Article  Google Scholar 

  169. I.S. Gilmore, M.P. Seah: Electron flood gun damage in the analysis of polymers and organics in time of flight SIMS, Appl. Surf. Sci. 187, 89 (2002)

    Article  Google Scholar 

  170. D. Briggs, A. Brown, J.C. Vickerman: Handbook of Static Secondary Ion Mass Spectrometry (SIMS) (Wiley, Chichester 1989)

    Google Scholar 

  171. J.G. Newman, B.A. Carlson, R.S. Michael, J.F. Moulder, T.A. Honit: Static SIMS Handbook of Polymer Analysis (Perkin Elmer, Eden Prairie 1991)

    Google Scholar 

  172. J.C. Vickerman, D. Briggs, A. Henderson: The Static SIMS Library (Surface Spectra, Manchester 2003), version 2

    Google Scholar 

  173. B.C. Schwede, T. Heller, D. Rading, E. Niehius, L. Wiedmann, A. Benninghoven: The Münster High Mass Resolution Static SIMS Library (ION-TOF, Münster 2003)

    Google Scholar 

  174. I.S. Gilmore, M.P. Seah: Static TOF-SIMS – A VAMAS interlaboratory study, Part I: Repeatability and reproducibility of spectra, Surf. Interface Anal. 37, 651 (2005)

    Article  Google Scholar 

  175. F.M. Green, I.S. Gilmore, M.P. Seah: TOF-SIMS: Accurate mass scale calibration, J. Am. Mass Spectrom. Soc. 17, 514 (2007)

    Article  Google Scholar 

  176. I.S. Gilmore, M.P. Seah: A static SIMS interlaboratory study, Surf. Interface Anal. 29, 624 (2000)

    Article  Google Scholar 

  177. A. Benninghoven, D. Stapel, O. Brox, B. Binkhardt, C. Crone, M. Thiemann, H.F. Arlinghaus: Static SIMS with molecular primary ions, Proc. 12nd Int. Conf. Second. Ion Mass Spectrom., SIMS XII, ed. by A. Benninghoven, P. Bertrand, H.-N. Migeon, H.W. Werner (Wiley, Chichester 2000) p. 259

    Google Scholar 

  178. A. Schneiders, M. Schröder, D. Stapel, H.F. Arlinghaus, A. Benninghoven: Molecular secondary particle emission from molecular overlayers under SF5+ bombardment, Proc. 12nd Int. Conf. Second. Ion Mass Spectrom., SIMS XII, ed. by A. Benninghoven, P. Bertrand, H.-N. Migeon, H.W. Werner (Wiley, Chichester 2000) p. 263

    Google Scholar 

  179. R. Kersting, B. Hagenhoff, P. Pijpers, R. Verlack: The influence of primary ion bombardment conditions on the secondary ion emission behaviour of polymer additives, Appl. Surf. Sci. 203/204, 561 (2003)

    Article  Google Scholar 

  180. R. Kersting, B. Hagenhoff, F. Kollmer, R. Möllers, E. Niehuis: Influence of primary ion bombardment conditions on the emission of molecular secondary ions, Appl. Surf. Sci. 231/232, 261 (2004)

    Article  Google Scholar 

  181. S.C.C. Wong, R. Hill, P. Blenkinsopp, N.P. Lockyer, D.E. Weibel, J.C. Vickerman: Development of a C60+ ion gun for static SIMS and chemical imaging, Appl. Surf. Sci. 203/204, 219 (2003)

    Article  Google Scholar 

  182. D.E. Weibel, N. Lockyer, J.C. Vickerman: C60 cluster ion bombardment of organic surfaces, Appl. Surf. Sci. 231/232, 146 (2003)

    Article  Google Scholar 

  183. M.P. Seah: Cluster ion sputtering: Molecular ion yield relationships for different cluster primary ions in static SIMS of organic materials, Surf. Interface Anal. 39, 890 (2007)

    Article  Google Scholar 

  184. N. Davies, D.E. Weibel, P. Blenkinsopp, N. Lockyer, R. Hill, J.C. Vickerman: Development and experimental application of a gold liquid metal ion source, Appl. Surf. Sci. 203/204, 223 (2003)

    Article  Google Scholar 

  185. I.S. Gilmore, M.P. Seah: G-SIMS of crystallisable organics, Appl. Surf. Sci. 203/204, 551 (2003)

    Article  Google Scholar 

  186. I.S. Gilmore, M.P. Seah: Static SIMS: Towards unfragmented mass spectra – The G-SIMS procedure, Appl. Surf. Sci. 161, 465 (2000)

    Article  Google Scholar 

  187. I.S. Gilmore, M.P. Seah: Organic molecule characterisation – G-SIMS, Appl. Surf. Sci. 231/232, 224 (2004)

    Article  Google Scholar 

  188. M.P. Seah, F.M. Green, I.S. Gilmore: Cluster primary ion sputtering: Secondary ion intensities in static SIMS of organic materials, J. Phys. Chem. C 114, 5351 (2010)

    Article  Google Scholar 

  189. L. De Chiffre, P. Lonardo, H. Trumpold, D.A. Lucca, G. Goch, C.A. Brown, J. Raja, H.N. Hansen: Quantitative characterisation of surface texture, CIRP Ann. 49(2), 635–652 (2000)

    Article  Google Scholar 

  190. M. Stedman: Basis for comparing the performance of surface measuring machines, Precis. Eng. 9, 149–152 (1987)

    Article  Google Scholar 

  191. D.J. Whitehouse: Handbook of Surface and Nanometrology, 2nd edn. (CRC, Boca Raton 2011)

    Book  Google Scholar 

  192. T.R. Thomas: Rough Surfaces, 2nd edn. (Imperial College Press, London 1999)

    Google Scholar 

  193. K.J. Stout, L. Blunt: Three-Dimensional Surface Topography (Penton, London 2000)

    Google Scholar 

  194. ISO 1302:2002 Geometrical Product Specifications (GPS) – Indication of surface texture in technical product documentation (ISO, Geneva 2002)

    Google Scholar 

  195. ISO 3274:1996 Geometrical Product Specifications (GPS) – Surface texture: Profile method – Nominal characteristics of contact (stylus) instruments (ISO, Geneva 1996)

    Google Scholar 

  196. ISO 4287:1997 Geometrical Product Specifications (GPS) – Surface texture: Profile method – Terms, definitions and surface texture parameters (ISO, Geneva 1997)

    Google Scholar 

  197. ISO 4287:1997/Amd1:2009 Peak count number (ISO, Geneva 1997)

    Google Scholar 

  198. ISO 4288:1996 Geometrical Product Specifications (GPS) – Surface texture: Profile method – Rules and procedures for the assessment of surface texture (ISO, Geneva 1996)

    Google Scholar 

  199. ISO 5436-2:2001 Geometrical Product Specifications (GPS) – Surface texture: Profile method; Measurement standards – Part 2: Software measurement standards (ISO, Geneva 2001)

    Google Scholar 

  200. ISO 8785:1998 Geometrical Product Specification (GPS) – Surface imperfections – Terms, definitions and parameters (ISO, Geneva 1998)

    Google Scholar 

  201. ISO 11562:1996 Geometrical Product Specifications (GPS) – Surface texture: Profile method – Metrological characteristics of phase correct filters (ISO, Geneva 1996)

    Google Scholar 

  202. ISO 12085:1996 Geometrical Product Specifications (GPS) – Surface texture: Profile method – Motif parameters (ISO, Geneva 1996)

    Google Scholar 

  203. ISO 12179:2000 Geometrical Product Specifications (GPS) – Surface texture: Profile method – Calibration of contact (stylus) instruments (ISO, Geneva 2000)

    Google Scholar 

  204. ISO 13565-1:1996 Geometrical Product Specifications (GPS) – Surface texture: Profile method; Surfaces having stratified functional properties – Part 1: Filtering and general measurement conditions (ISO, Geneva 1996)

    Google Scholar 

  205. ISO 13565-2:1996 Geometrical Product Specifications (GPS) – Surface texture: Profile method; Surfaces having stratified functional properties – Part 2: Height characterization using the linear material ratio curve (ISO, Geneva 1996)

    Google Scholar 

  206. ISO 13565-3:1998 Geometrical Product Specifications (GPS) – Surface texture: Profile method; Surfaces having stratified functional properties – Part 3: Height characterization using the material probability curve (ISO, Geneva 1998)

    Google Scholar 

  207. ISO/TS 16610-1:2006 Geometrical product specifications (GPS) – Filtration – Part 1: Overview and basic concepts (ISO, Geneva 2006)

    Google Scholar 

  208. ISO/TS 16610-20:2006 Geometrical product specifications (GPS) – Filtration – Part 20: Linear profile filters: Basic concepts (ISO, Geneva 2006)

    Google Scholar 

  209. ISO/TS 16610-22:2006 Geometrical product specifications (GPS) – Filtration – Part 22: Linear profile filters: Spline filters (ISO, Geneva 2006)

    Google Scholar 

  210. ISO/TS 16610-28:2010 Geometrical product specifications (GPS) – Filtration – Part 28: Profile filters: End effects (ISO Geneva 2010)

    Google Scholar 

  211. ISO/TS 16610-29:2006 Geometrical product specifications (GPS) – Filtration – Part 29: Linear profile filters: Spline wavelets (ISO, Geneva 2006)

    Google Scholar 

  212. ISO/TS 16610-30:2009 Geometrical product specifications (GPS) – Filtration – Part 30: Robust profile filters: Basic concepts (ISO, Geneva 2009)

    Google Scholar 

  213. ISO/TS 16610-31:2010 Geometrical product specifications (GPS) – Filtration – Part 31: Robust profile filters: Gaussian regression filters (ISO, Geneva 2010)

    Google Scholar 

  214. ISO/TS 16610-32:2009 Geometrical product specifications (GPS) – Filtration – Part 32: Robust profile filters: Spline filters (ISO, Geneva 2009)

    Google Scholar 

  215. ISO/TS 16610-40:2006 Geometrical product specifications (GPS) – Filtration – Part 40: Morphological profile filters: Basic concepts (ISO, Geneva 2006)

    Google Scholar 

  216. ISO/TS 16610-41:2006 Geometrical product specifications (GPS) – Filtration – Part 41: Morphological profile filters: Disk and horizontal line-segment filters (ISO, Geneva 2006)

    Google Scholar 

  217. ISO/TS 16610-48:2006 Geometrical product specifications (GPS) – Filtration – Part 49: Morphological profile filters: Scale space techniques (ISO, Geneva 2006)

    Google Scholar 

  218. ISO 25178-6:2010 Geometrical product specifications (GPS) – Surface texture: Areal – Part 6: Classification of methods for measuring surface texture (ISO, Geneva 2010)

    Google Scholar 

  219. ISO 25178-601:2010 Geometrical product specifications (GPS) – Surface texture: Areal – Part 601: Nominal characteristics of contact (stylus) instruments (ISO, Geneva 2010)

    Google Scholar 

  220. ISO 25178-602:2010 Geometrical product specifications (GPS) – Surface texture: Areal – Part 602: Nominal characteristics of noncontact (confocal chromatic probe) instruments (ISO, Geneva 2010)

    Google Scholar 

  221. ISO 26178-701:2010 Geometrical product specifications (GPS) – Surface texture: Areal – Part 701: Calibration and measurement standards for contact (stylus) instruments (ISO, Geneva 2010)

    Google Scholar 

  222. ISO 1302:2002/DAmd 2 Indication of material ratio requirements (ISO, Geneva 2002)

    Google Scholar 

  223. ISO/DIS 16610-21 Geometrical product specifications (GPS) – Filtration – Part 21: Linear profile filters: Gaussian filters

    Google Scholar 

  224. ISO/CD 25178-1 Geometrical product specifications (GPS) – Surface texture: Areal – Part 1: Indication of surface texture

    Google Scholar 

  225. ISO/DIS 25178-2 Geometrical product specifications (GPS) – Surface texture: Areal – Part 2: Terms, definitions and surface texture parameters

    Google Scholar 

  226. ISO/DIS 25178-3.2 Geometrical product specifications (GPS) – Surface texture: Areal – Part 3: Specification operators

    Google Scholar 

  227. ISO/DIS 25178-7 Geometrical product specifications (GPS) – Surface texture: Areal – Part 7: Software measurement standards

    Google Scholar 

  228. ISO/DIS 25178-603 Geometrical product specifications (GPS) – Surface texture: Areal – Part 603: Nominal characteristics of noncontact (phase-shifting interferometric microscopy) instruments

    Google Scholar 

  229. ISO/DIS 25178-604 Geometrical product specifications (GPS) – Surface texture: Areal – Part 604: Nominal characteristics of noncontact (coherence scanning interferometry) instruments

    Google Scholar 

  230. ISO/CD 25178-605 Geometrical product specifications (GPS) – Surface texture: Areal – Part 605: Nominal characteristics of noncontact (point autofocusing) instruments

    Google Scholar 

  231. ISO 5436-1:2000 Geometrical Product Specifications (GPS) – Surface texture: Profile method; Measurement standards – Part 1: Material measures (ISO, Geneva 2000)

    Google Scholar 

  232. M.C. Malburg, J. Raja: Characterization of surface texture generated by plateau honing process, CIRP Ann. 42(1), 637–639 (1993)

    Article  Google Scholar 

  233. K.J. Stout, P.J. Sullivan, W.P. Dong, E. Mainsah, N. Luo, T. Mathia, H. Zahouani: The Development of Methods for the Characterisation of Roughness in Three Dimensions, Report EUR 15178 EN (European Commission, Brussels 1993)

    Google Scholar 

  234. K.J. Stout: Three Dimensional Surface Topography, Measurement, Interpretation and Applications (Penton, London 1994)

    Google Scholar 

  235. L. Blunt, X. Jiang: Advanced Techniques for Assessment Surface Topography (Penton, London 2003)

    Google Scholar 

  236. Image Metrology A/S: Scanning Probe Image Processor (SPIP) (Image Metrology A/S, Lyngby 2010), www.imagemet.com

    Google Scholar 

  237. P.M. Lonardo, L. De Chiffre, A.A. Bruzzone: Characterisation of functional surfaces, Proc. Int. Conf. Tribol. Manuf. Processes, ed. by N. Bay (IPL/Technical University of Denmark, Lyngby 2004)

    Google Scholar 

  238. R. Hillmann: Surface profiles obtained by means of optical methods – Are they true representations of the real surface?, CIRP Ann. 39(1), 581–583 (1990)

    Article  Google Scholar 

  239. P. Bariani: Dimensional metrology for microtechnology. Ph.D. Thesis (Technical University of Denmark, Lyngby 2004)

    Google Scholar 

  240. G. Binnig, C.F. Quate, C. Gerber: Atomic force microscope, Phys. Rev. Lett. 56, 930–933 (1986)

    Article  Google Scholar 

  241. P.M. Lonardo, D.A. Lucca, L. De Chiffre: Emerging trends in surface metrology, CIRP Ann. 51(2), 701–723 (2002)

    Article  Google Scholar 

  242. N. Kofod: Validation and industrial application of AFM. Ph.D. Thesis (Technical University of Denmark and Danish Fundamental Metrology, Lyngby 2002)

    Google Scholar 

  243. L. De Chiffre, H.N. Hansen, N. Kofod: Surface topography characterization using an atomic force microscope mounted on a coordinate measuring machine, CIRP Ann. 48(1), 463–466 (1999)

    Article  Google Scholar 

  244. H.N. Hansen, P. Bariani, L. De Chiffre: Modelling and measurement uncertainty estimation for integrated AFM-CMM instrument, CIRP Ann. 54(1), 531–534 (2005)

    Article  Google Scholar 

  245. J.C. Wyant, J. Schmit: Large field of view, high spatial resolution, surface measurements, Int. J. Mach. Tools Manuf. 38(5/6), 691–698 (1998)

    Article  Google Scholar 

  246. K. Yanagi, M. Hasegawa, S. Hara: A computational method for stitching a series of 3-D surface topography data measured by microscope-type surface profiling instruments, Proc. 3rd EUSPEN Int. Conf. 2, ed. by F.L.M. Delbressine, P.H.J. Schellekens, F.G.A. Homburg, H. Haitjema (TU Eindhoven, Eindhoven 2002) pp. 653–656

    Google Scholar 

  247. S.H. Huerth, H.D. Hallen: Quantitative method of image analysis when drift is present in a scanning probe microscope, J. Vac. Sci. Technol. 21(2), 714–718 (2003)

    Article  Google Scholar 

  248. G. Dai, F. Pohlenz, H.U. Danzebrink, M. Xu, K. Hasche, G. Wilkening: A novel metrological large range scanning probe microscope applicable for versatile traceable topography measurements., Proc. 4th EUSPEN Int. Conf. (euspen, Glasgow 2004) pp. 228–229

    Google Scholar 

  249. A. Boyde: Quantitative photogrammetric analysis and qualitative stereoscopic analysis of SEM images, J. Microsc. 98, 452–471 (1973)

    Article  Google Scholar 

  250. W. Hillmann: Rauheitsmessung mit dem Raster–Elektronenmikroskop (REM), Tech. Mess. 47, V9116–6 (1980), in German

    Google Scholar 

  251. G. Piazzesi: Photogrammetry with the scanning electron microscope, J. Phys. E 6(4), 392–396 (1973)

    Google Scholar 

  252. O. Kolednik: A contribution to stereo-photogrammetry with the scanning electron microscope, Pract. Metallogr. 18, 562–573 (1981)

    Google Scholar 

  253. S. Scherer: 3-D surface analysis in scanning electron microscopy, G.I.T Imaging Microsc. 3, 45–46 (2002)

    Google Scholar 

  254. M. Schubert, A. Gleichmann, M. Hemmleb, J. Albertz, J.M. Köhler: Determination of the height of a microstructure sample by a SEM with a conventional and a digital photogrammetric method, Ultramicroscopy 63, 57–64 (1996)

    Article  Google Scholar 

  255. Alicona Imaging: MeX Software (Alicona Imaging, Graz 2008)

    Google Scholar 

  256. P. Bariani: Investigation on Traceability of 3-D SEM based on the Stereo-Pair Technique, IPL Internal Report (Technical University of Denmark, Lungby 2003)

    Google Scholar 

  257. P. Bariani, L. De Chiffre, H.N. Hansen, A. Horsewell: Investigation on the traceability of three dimensional scanning electron microscope measurements based on the stereo-pair technique, Precis. Eng. 29, 219–228 (2005)

    Article  Google Scholar 

  258. V.T. Vorburger, E.C. Teague: Optical techniques for on-line measurement of surface topography, Precis. Eng. 3, 61–83 (1981)

    Article  Google Scholar 

  259. G. Staufert, E. Matthias: Kennwerte der Oberflächenrauhigkeit und ihre Aussagekraft hinsichtlich der Charakterisierung bestimmter Oberflächentypen, CIRP Ann. 25(1), 345–350 (1977), in German

    Google Scholar 

  260. S. Christiansen, L. De Chiffre: Topographic characterisation of progressive wear on deep drawing dies, Tribol. Trans. 40, 346–352 (1997)

    Article  Google Scholar 

  261. L. De Chiffre, H. Kunzmann, G.N. Peggs, D.A. Lucca: Surfaces in precision engineering, microengineering and nanotechnology, CIRP Ann. 52(2), 561–577 (2003)

    Article  Google Scholar 

  262. ISO: International Vocabulary of Basic and General Terms in Metrology (ISO, Geneva 1993)

    Google Scholar 

  263. H. Haitjema, M. Morel: Traceable roughness measurements of products, Proc. 1st EUSPEN Top. Conf. Fabr. Metrol. Nanotechnol., Vol. 2, ed. by L. De Chiffre, K. Carneiro (IPL/Technical University of Denmark, Lyngby 2000) pp. 373–381

    Google Scholar 

  264. R. Leach: Calibration, Traceability and Uncertainty Issues in Surface Texture Metrology. NPL report CLM 7 (National Physical Laboratory, Teddington 1999)

    Google Scholar 

  265. L. Koenders, J.L. Andreasen, L. De Chiffre, L. Jung, R. Krüger-Sehm: Supplementary comparison euromet, L-S11 comparison on surface texture, Metrologia 41, 04001 (2004)

    Article  Google Scholar 

  266. EAL G20: Calibration of Stylus Instruments for Measuring Surface Roughness, 1st edn. (European Cooperation for Accreditation, Paris 1996) pp. 1–9

    Google Scholar 

  267. N. Kofod, J. Garnaes, J.F. Jørgensen: Calibrated line measurements with an atomic force microscope, Proc. 1st EUSPEN Topical Conf. Fabrication and Metrology in Nanotechnology, Vol. 2 (2000) pp. 373–381

    Google Scholar 

  268. N. Kofod, J.F. Jørgensen: Methods for lateral calibration of Scanning Probe Microscopes based on two-dimensional transfer standards, Proc. 4th Semin. Quant. Microsc. (QM), Semmering, ed. by K. Hasche, W. Mirandé, G. Wilkening (PTB, Braunschweig 2000) pp. 36–43

    Google Scholar 

  269. J. Garnaes, L. Nielsen, K. Dirscherl, J.F. Jorgensen, J.B. Rasmussen, P.E. Lindelof, C.B. Sorensen: Two-dimensional nanometre-scale calibration based on one-dimensional gratings, Appl. Phys. A 66, S831–S835 (1998)

    Article  Google Scholar 

  270. R. Leach, A. Hart: A comparison of stylus and optical methods for measuring 2-D surface texture, NPL Report CBTLM 15 (National Physical Laboratory, Teddington 2002)

    Google Scholar 

  271. R. Krüger-Sehm, J.A. Luna Perez: Proposal for a guideline to calibrate interference microscopes for use in roughness measurement, Mach. Tools Manufact. 41, 2123–2137 (2001)

    Article  Google Scholar 

  272. P.M. Lonardo, H. Trumpold, L. De Chiffre: Progress in 3-D surface microtopography characterization, CIRP Ann. 45(2), 589–598 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Martin Seah Dr. or Leonardo De Chiffre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag

About this chapter

Cite this chapter

Seah, M., Chiffre, L.D. (2011). Surface and Interface Characterization. In: Czichos, H., Saito, T., Smith, L. (eds) Springer Handbook of Metrology and Testing. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16641-9_6

Download citation

Publish with us

Policies and ethics