Skip to main content

Nanoscopic Architecture and Microstructure

  • Chapter
Springer Handbook of Metrology and Testing

Part of the book series: Springer Handbooks ((SHB))

Abstract

The methods compiled in this chapter are important in many areas of materials science and technology because various physical properties of materials (mechanical, thermal, electronic, optical, magnetic, dielectric, biological) depend on their geometric architecture, on scales ranging from the atomic or nanoscopic to the semimicroscopic. Some of the properties are governed only by an elementary atomic group in the structural hierarchy while others are brought about by cooperative functioning of multiple phases or microscopic structures in different dimensions. Corresponding to the vast variety of materials and their properties, a wide range of experimental techniques are available, so that the choice of which technique to employ on starting a study may not be clear. In this respect one should also bear in mind that some of the techniques presented in this chapter are based on physical principles, which are also relevant to the measurement methods compiled in Chaps. 6 and 11.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AES:

Auger electron spectroscopy

AFM:

atomic force microscope

AFM:

atomic force microscopy

BF:

bright field

CBED:

convergent beam electron diffraction

CD:

circular dichroism

CE:

Communauté Européenne

CE:

Conformité Européenne

CE:

capillary electrophoresis

CE:

counter electrode

CL:

cathodoluminescence

COSY:

correlated spectroscopy

CT:

compact tension

CT:

compact test

CT:

computed tomography

DF:

dark field

DLTS:

deep-level transient spectroscopy

DNA:

deoxyribonucleic acid

EBIC:

electron-beam-induced current

ECP:

electron channeling pattern

EDMR:

electrically detected magnetic resonance

EDX:

energy dispersive x-ray

EELS:

electron energy-loss spectroscopy

EF:

emission factors

ENDOR:

electron nuclear double resonance

EPMA:

electron probe microanalysis

EPR:

electron paramagnetic resonance

ESR:

electron spin resonance

EXAFS:

extended x-ray absorption fine structure

FID:

free induction decay

FIM:

field ion microscopy

FOLZ:

first-order Laue zone

FRET:

fluorescence resonant energy transfer

FT:

Fourier transform

GC:

gas chromatography

GE:

gel electrophoresis

GP:

Guinier–Preston

HAADF:

high-angle annular dark-field

HOLZ:

higher-order Laue zone

HR:

Rockwell hardness

HRTEM:

high-resolution transmission electron microscopy

IR:

infrared

IRAS:

infrared absorption spectroscopy

LC:

liquid chromatography

LC:

liquid crystal

LDOS:

local density of states

LSCM:

laser scanning confocal microscope

LVM:

local vibrational mode

MCD:

magnetic circular dichroism

MCDA:

magnetic circular dichroic absorption

MCPE:

magnetic circular-polarized emission

MEM:

maximum entropy method

MRI:

magnetic resonance imaging

NEXAFS:

near-edge x-ray absorption fine structure

NMR:

nuclear magnetic resonance

NOE:

nuclear Overhauser effect

ODF:

orientation distribution function

ODMR:

optically detected magnetic resonance

OM:

optical microscopy

ORD:

optical rotary dispersion

PAC:

Pacific Accreditation Cooperation

PAC:

perturbed angular correlation

PAS:

positron annihilation spectroscopy

PCI:

phase contrast imaging

PCR:

polymerase chain reaction

PEELS:

parallel electron energy loss spectroscopy

PL:

photoluminescence

RF:

radiofrequency

SAD:

selected area diffraction

SE:

secondary electron

SEM:

scanning electron microscopy

SNOM:

scanning near-field optical microscopy

SOLZ:

second-order Laue zone

SPI:

selective polarization inversion

SPM:

scanning probe microscopy

SPM:

self-phase modulation

STEM:

scanning transmission electron microscopy

STM:

scanning tunneling microscopy

STS:

scanning tunneling spectroscopy

TEM:

transmission electron microscopy

TIRFM:

total internal reflection fluorescence microscopy

TOF:

time of flight

XCT:

x-ray computed tomography

XPS:

x-ray photoelectron spectroscopy

XPS:

x-ray photoemission spectroscopy

XRT:

x-ray topography

YAG:

yttrium aluminum garnet

ZOLZ:

zero-order Laue zone

bcc:

body-centered-cubic

fcc:

face-centered cubic

References

  1. A. Briggs, W. Arnold: Advances in Acoustic Microscopy (Plenum, New York 1995)

    Book  Google Scholar 

  2. K. Sakai, T. Ogawa: Fourier-transformed light scattering tomography for determination of scatterer shapes, Meas. Sci. Technol. 8, 1090 (1997)

    Article  Google Scholar 

  3. S.V. Gupta: Practical Density Measurement and Hydrometry (IOP, Bristol 2002)

    Book  Google Scholar 

  4. Z. Alfassi: Activation Analysis, Vol. I&II (CRC, Boca Raton 1990)

    Google Scholar 

  5. A. Tonomura: Electron Holography (Springer, Berlin, Heidelberg 1999)

    Book  Google Scholar 

  6. J. Shah: Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures (Springer, Berlin, Heidelberg 1996)

    Book  Google Scholar 

  7. T. Wimbauer, K. Ito, Y. Mochizuki, M. Horikawa, T. Kitano, M.S. Brandt, M. Stutzmann: Defects in planar Si pn junctions studied with electrically detected magnetic resonance, Appl. Phys. Lett. 76, 2280 (2000)

    Article  Google Scholar 

  8. L.V. Azároff: Elements of X-ray Crystallography (McGraw-Hill, New York 1968)

    Google Scholar 

  9. J.M. Cowley: Diffraction Physics (North-Holland, Amsterdam 1975)

    Google Scholar 

  10. B.D. Cullity: Elements of X-ray Diffraction (Addison-Wesley, Reading 1977)

    Google Scholar 

  11. A. Guinier: X-ray Diffraction in Crystals and Imperfect Crystals, Amorphous Bodies (Dover, New York 1994)

    Google Scholar 

  12. G. Rhodes: Crystallography Made Crystal Clear (Academic, San Diego 2000)

    Google Scholar 

  13. S. Bradbury: An Introduction to the Optical Microscope (Oxford Sci. Publ., Oxford 1989)

    Google Scholar 

  14. P.B. Hirsch, A. Howie, R.B. Nicholson, D.W. Pashley, M.J. Whelan: Electron Microscopy of Thin Crystals (Butterworths, London 1965)

    Google Scholar 

  15. D.B. Williams, C.B. Carter: Transmission Electron Microscopy (Plenum, New York 1996)

    Book  Google Scholar 

  16. M.J. Whelan: Dynamical Theory of Electron Diffraction. In: Modern Diffraction and Imaging Techniques in Materials Science, ed. by S. Amelinckx, R. Gevers, G. Remaut, J. Van Landuyt (North-Holland, Amsterdam 1970) p. 35

    Google Scholar 

  17. C.E. Lyman, D.E. Newbury, J.I. Goldstein, D.B. Williams, A.D. Romig Jr., J.T. Armstrong, P. Echlin, C.E. Fiori, D.C. Joy, E. Lifshin, K. Peters: Scanning Electron Microscopy, X-ray Microanalysis and Analytical Electron Microscopy (Plenum, New York 1990)

    Book  Google Scholar 

  18. D. Bonnell (Ed.): Scanning Probe Microscopy and Spectroscopy (Wiley, Weinheim 2001)

    Google Scholar 

  19. B. Bhushan, H. Huchs, S. Hosaka (Eds.): Applied Scanning Probe Methods (Springer, Berlin, Heidelberg 2004)

    Google Scholar 

  20. K.S. Birdi: Scanning Probe Microscopes (CRC, Boca Raton 2003)

    Book  Google Scholar 

  21. V.J. Morris, A.R. Kirby, A.P. Gunning: Atomic Force Microscopy for Biologists (Imperial College Press, London 1999)

    Book  Google Scholar 

  22. S. Morita, R. Wiesendanger, E. Meyer: Noncontact Atomic Force Microscopy (Springer, Berlin, Heidelberg 2002)

    Book  Google Scholar 

  23. M. Ohtsu: Near-Field Nano-Atom Optics and Technology (Plenum, New York 1999)

    Book  Google Scholar 

  24. M.K. Miller, G.D.W. Smith: Atom Probe Microanalysis (Materials Research Society, Pittsburgh 1989)

    Google Scholar 

  25. S. Morita, N. Oyabu: Atom selective imaging and mechanical atom manipulation based on noncontact atomic force microscope method, e-J. Surf. Sci. Technol. 1, 158 (2003)

    Google Scholar 

  26. D. Attwood: Soft X-rays and Extreme Ultraviolet Radiation (Cambridge Univ. Press, Cambridge 1999)

    Book  Google Scholar 

  27. H. Kusmany: Solid State Spectroscopy (Springer, Berlin, Heidelberg 1998) p. 210

    Book  Google Scholar 

  28. M. Fleischman, P.J. Hendra, A.J. McQuillan: Raman-spectra of pyridine adsorbed at a silver electrode, Chem. Phys. Lett. 26, 163 (1974)

    Article  Google Scholar 

  29. D.L. Feldheim, C.A. Foss Jr.: Metal Nanoparticles (Marcel Dekker, New York 2002)

    Google Scholar 

  30. A.S. Nowick, B.S. Berry: Anelastic Relaxation in Crystalline Solids (Academic, New York 1972)

    Google Scholar 

  31. G. Bricogne: Maximum-entropy and the foundations of direct methods, Acta Cryst. A 40, 410 (1984)

    Article  Google Scholar 

  32. S. Ogawa, M. Hirabayashi, D. Watanabe, H. Iwasaki: Long-period Ordered Alloys (Agne Gijutsu Center, Tokyo 1997)

    Google Scholar 

  33. R. Kitaura, S. Kitagawa, Y. Kubota, T.C. Kobayashi: Formation of a one-dimensional array of oxygen in a microporous metal-organic solid, Science 298, 2358 (2002)

    Article  Google Scholar 

  34. R.B. Von Dreele: Combined Rietveld and stereochemical restraint refinement of a protein crystal structure, J. Appl. Cryst. 32, 1084 (1999)

    Article  Google Scholar 

  35. M. Ito, H. Narumi, T. Mizoguchi, T. Kawamura, H. Iwasaki, N. Shiotani: Structural change of amorphous Mg70Zn30 alloy under isothermal annealing, J. Phys. Soc. Jpn. 54, 1843–1854 (1985)

    Article  Google Scholar 

  36. S.R.P. Silva: Properties of Amorphous Carbon (INSPEC, London 2003)

    Google Scholar 

  37. P. Ehrhart, H.G. Haubold, W. Schilling: Investigation of Point Defects and Their Agglomerates in Irradiated Metals by Diffuse X-ray Scattering. In: Festkörperprobleme XIV/Advances in Solid State Phys, ed. by H.J. Queisser (Vieweg, Braunschweig 1974)

    Google Scholar 

  38. A. Hida, Y. Mera, K. Maeda: Identification of arsenic antisite defects with EL2 by nanospectroscopic studies of individual centers, Physica B 308–310, 738 (2001)

    Article  Google Scholar 

  39. P.M. Voyles, D.A. Muller, J.L. Grazul, P.H. Citrin, H.-J.L. Gossmann: Atomic-scale imaging of individual dopant atoms and clusters in highly n-type bulk Si, Nature 416, 826 (2002)

    Article  Google Scholar 

  40. D.A. Muller, N. Nakagawa, A. Ohtomo, J. Grazul, H.Y. Hwang: Atomic-scale imaging of nanoengineered oxygen vacancy profiles in SrTiO3, Nature 430, 657 (2004)

    Article  Google Scholar 

  41. F. Lüty: FA centers in alkali halide crystals. In: Physics of Color Centers, ed. by W.B. Fowler (Academic Press, New York 1968) p. 181

    Google Scholar 

  42. A. van der Ziel: Noise in Solid State Devices and Circuits (Wiley, New York 1986)

    Google Scholar 

  43. N.B. Lukyanchikova: Noise Research in Semiconductor Physics (Gordon Breach, Amsterdam 1996)

    Google Scholar 

  44. N. Fukata, T. Ohori, M. Suezawa, H. Takahashi: Hydrogen-defect complexes formed by neutron irradiation of hydrogenated silicon observed by optical absorption measurement, J. Appl. Phys. 91, 5831 (2002)

    Article  Google Scholar 

  45. A. Hida: unpublished

    Google Scholar 

  46. J.P. Buisson, S. Lefrant, A. Sadoc, L. Taureland, M. Billardon: Raman-scattering by KI containing F-centers, Phys. Status Solidi (b) 78, 779 (1976)

    Article  Google Scholar 

  47. T. Sekiguchi, Y. Sakuma, Y. Awano, N. Yokoyama: Cathodoluminescence study of InGaAs/GaAs quantum dot structures formed on the tetrahedral-shaped recesses on GaAs (111)B substrates, J. Appl. Phys. 83, 4944 (1998)

    Article  Google Scholar 

  48. G.D. Watkins: Radiation Damage in Semiconductors (Dunod, Paris 1964) p. 97

    Google Scholar 

  49. B. Henderson: Defects in Crystalline Solids (Arnold, London 1972)

    Google Scholar 

  50. L.F. Mollenauer, S. Pan: Dynamics of the optical-pumping cycle of F centers in alkali halides-theory and application to detection of electron-spin and electron-nuclear-double-spin resonance in the relaxed-excited state, Phys. Rev. B 6, 772 (1972)

    Article  Google Scholar 

  51. S.E. Barrett, R. Tycko, L.N. Pfeiffer, K.W. West: Directly detected nuclear-magnetic-resonance of optically pumped GaAs quantum-wells, Phys. Rev. Lett. 72, 1368 (1994)

    Article  Google Scholar 

  52. K. Morigaki: Spin-dependent radiative and nonradiative recombinations in hydrogenated amorphous silicon: Optically detected magnetic resonance, J. Phys. Soc. Jpn. 50, 2279 (1981)

    Article  Google Scholar 

  53. A. Möslang, H. Graf, G. Balzer, E. Recknagel, A. Weidinger, T. Wichert, R.I. Grynszpan: Muon trapping at monovacancies in iron, Phys. Rev. B 27, 2674 (1983)

    Article  Google Scholar 

  54. C.P. Slichter, D. Ailion: Low-field relaxation and the study of ultraslow atomic motions by magnetic resonance, Phys. Rev. 135, A1099 (1964)

    Article  Google Scholar 

  55. M.J. Puska, C. Corbel: Positron states in Si and GaAs, Phys. Rev. B 38, 9874 (1988)

    Article  Google Scholar 

  56. M. Hakala, M.J. Puska, R.M. Nieminen: Momentum distributions of electron-positron pairs annihilating at vacancy clusters in Si, Phys. Rev. B 57, 7621 (1998)

    Article  Google Scholar 

  57. M. Hasegawa: private communication

    Google Scholar 

  58. M. Saito, A. Oshiyama: Lifetimes of positrons trapped at Si vacancies, Phys. Rev. B 53, 7810 (1996)

    Article  Google Scholar 

  59. Z. Tang, M. Saito, M. Hasegawa: unpublished

    Google Scholar 

  60. H. Ohkubo, Z. Tang, Y. Nagai, M. Hasegawa, T. Tawara, M. Kiritani: Positron annihilation study of vacancy-type defects in high-speed deformed Ni, Cu and Fe, Mater. Sci. Eng. A 350, 95 (2003)

    Article  Google Scholar 

  61. P. Hautojärvi: Positrons in Solids (Springer, Berlin, Heidelberg 1979)

    Book  Google Scholar 

  62. R. Krause-Rehberg, H.S. Leipner: Positron Annihilation in Semiconductors (Springer, Berlin, Heidelberg 1999)

    Book  Google Scholar 

  63. W. Triftshäuser, J.D. McGervey: Monovacancy formation energy in copper, silver, and gold by positron-annihilation, Appl. Phys. 6, 177 (1975)

    Article  Google Scholar 

  64. R.O. Simmons, R.W. Balluffi: Measurements of equilibrium vacancy concentrations in aluminum, Phys. Rev. 117, 52 (1960)

    Article  Google Scholar 

  65. M. Hasegawa, Z. Tang, Y. Nagai, T. Nonaka, K. Nakamura: Positron lifetime and coincidence Doppler broadening study of vacancy-oxygen complexes in Si: Experiments and first-principles calculations, Appl. Surf. Sci. 194, 76 (2002)

    Article  Google Scholar 

  66. S. Mantl, W. Triftshäuser: Defect annealing studies on metals by positron-annihilation and electrical-resistivity measurement, Phys. Rev. B 17, 1645 (1978)

    Article  Google Scholar 

  67. M. Hasegawa, Z. Tang, Y. Nagai, T. Chiba, E. Kuramoto, M. Takenaka: Irradiation-induced vacancy and Cu aggregations in Fe-Cu model alloys of reactor pressure vessel steels: State-of-the-art positron annihilation spectroscopy, Philos. Mag. 85, 467 (2005)

    Article  Google Scholar 

  68. T. Moriya, H. Ino, F.E. Fujita, Y. Maeda: Mössbauer effect in iron-carbon martensite structure, J. Phys. Soc. Jpn. 24, 60 (1968)

    Article  Google Scholar 

  69. K. Nakagawa, K. Maeda, S. Takeuchi: Observation of dislocations in cadmium telluride by cathodoluminescence microscopy, Appl. Phys. Lett. 34, 574 (1979)

    Article  Google Scholar 

  70. L.N. Pronina, S. Takeuchi, K. Suzuki, M. Ichihara: Dislocation-structures in rolled and annealed (001) [110] single-crystal molybdenum, Philos. Mag. A 45, 859 (1982)

    Article  Google Scholar 

  71. M.J. Hÿtch, J. Putaux, J. Pénisson: Measurement of the displacement field of dislocations to 0.03 Åby electron microscopy, Nature 423, 270–273 (2003)

    Article  Google Scholar 

  72. R.L. Snyder, J. Fiala, H.J. Bunge: Defect, Microstructure Analysis by Diffraction (Oxford Univ. Press, Oxford 1999)

    Google Scholar 

  73. G. Rhodes: Crystallography: A Guide for Users of Macromolecular Models, 2nd edn. (Academic, San Diego 2000)

    Google Scholar 

  74. K. Wüthrich: NMR of Proteins and Nucleic Acids (Wiley, New York 1986)

    Google Scholar 

  75. J.K.M. Sanders, B.K. Hunter: Modern NMR Spectroscopy (Oxford Univ. Press, Oxford 1993)

    Google Scholar 

  76. T.D.W. Claridge: High Resolution NMR Techniques in Organic Chemistry (Elsevier, Oxford 1999)

    Google Scholar 

  77. Y. Arata: NMR in Proteins (Kyoritsu, Tokyo 1996)

    Google Scholar 

  78. S. Weiss: Measuring conformational dynamics of biomolecules by single molecule fluorescence spectroscopy, Nat. Struct. Biol. 7, 724 (2000)

    Article  Google Scholar 

  79. V. Randle, O. Engler: Introduction to Texture Analysis (Taylor Francis, London 2000)

    Google Scholar 

  80. D.C. Joy, D.E. Newbury, D.L. Davidson: Electron channeling patterns in the scanning electron-microscope, J. Appl. Phys. 53, R81 (1982)

    Article  Google Scholar 

  81. K. Suenaga, T. Tence, C. Mori, C. Colliex, H. Kato, T. Okazaki, H. Shinohara, K. Hirahara, S. Bandow, S. Iijima: Element-selective single atom imaging, Science 290, 2280 (2000)

    Article  Google Scholar 

  82. N. Hayazawa, A. Tarun, Y. Inouye, S. Kawata: Near-field enhanced Raman spectroscopy using side illumination optics, J. Appl. Phys. 92, 6983 (2002)

    Article  Google Scholar 

  83. R. Snyder, J. Fiala, H.J. Bunge: Defect and Microstructure Analysis by Diffraction (Oxford Univ. Press, Oxford 1999)

    Google Scholar 

  84. B.D. Cullity: Elements of X-ray Diffraction, 2nd edn. (Addison-Wesley, Reading 1978)

    Google Scholar 

  85. M.E. Fitzpatrick, A. Lodini: Analysis of Residual Stress by Diffraction Using Neutron and Synchrotron Radiation (CRC, Boca Raton 2004)

    Google Scholar 

  86. K. Hono: Nanoscale microstructural analysis of metallic materials by atom probe field ion microscopy, Prog. Mater. Sci. 47, 621 (2002)

    Article  Google Scholar 

  87. H. Jinnai, Y. Nishikawa, T. Ikehara, T. Nishi: Emerging technologies for the 3D analysis of polymer structures, Adv. Polym. Sci. 170, 115 (2004)

    Google Scholar 

  88. A. Momose: Phase-contrast X-ray imaging based on interferometry, J. Synchrotron Rad. 9, 136 (2002)

    Article  Google Scholar 

  89. A. Momose: Demonstration of phase-contrast X-ray computed tomography using an X-ray interferometer, Nucl. Instrum. Methods A 352, 622 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Koji Maeda Prof. or Hiroshi Mizubayashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag

About this chapter

Cite this chapter

Maeda, K., Mizubayashi, H. (2011). Nanoscopic Architecture and Microstructure. In: Czichos, H., Saito, T., Smith, L. (eds) Springer Handbook of Metrology and Testing. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16641-9_5

Download citation

Publish with us

Policies and ethics