Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

The term phase field has recently become known across many fields of materials science. The meaning of phase field is the spatial and temporal order parameter field defined in a continuum-diffused interface model. By using the phase field order parameters, many types of complex microstructure changes observed in materials science are described effectively. This methodology has been referred to as the phase field method, phase field simulation, phase field modeling, phase field approach, etc. In this chapter, the basic concept and theoretical background for the phase field approach is explained in Sects. 21.1 and 21.2. The overview of recent applications of the phase field method is demonstrated in Sects. 21.3 to 21.6.

Phase field models have been successfully applied to various materials processes including solidification, solid-state phase transformations and microstructure changes. Using phase field methodology, one can deal with the evolution of arbitrary morphologies and complex microstructures without explicitly tracking the positions of interfaces. This approach can describe different processes such as diffusion-controlled phase separation and diffusionless phase transition within the same formulation. It is rather straightforward to incorporate the effect of coherency and applied stresses, as well as electrical and magnetic fields.

Since phase field methodology can model complex microstructure changes quantitatively, it will be possible to search for the most desirable microstructure using this method as a design simulation, i.e., through computer trial-and-error testing. Therefore, the most effective strategy for developing advanced materials is as follows. First, we elucidate the mechanism of microstructure changes experimentally, then we model the microstructure evolutions using the phase-field method based on the experimental results, and finally we search for the most desirable microstructure while simultaneously considering both the simulation and experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

KKS:

Kim–Kim–Suzuki

bcc:

body-centered-cubic

fcc:

face-centered cubic

References

  1. R. Kobayashi: Modeling and numerical simulations of dendritic crystal growth, Physica D 63, 410–423 (1993)

    Article  Google Scholar 

  2. A.A. Wheeler, W.J. Boettinger, G.B. McFadden: Phase-field model for isothermal phase transitions in binary alloys, Phys. Rev. A 45, 7424–7439 (1992)

    Article  Google Scholar 

  3. W.J. Boettinger, J.A. Warren, C. Beckermann, A. Karma: Phase-field simulation of solidification, Annu. Rev. Mater. Res. A 32, 163–194 (2002)

    Article  Google Scholar 

  4. L.-Q. Chen: Phase-field models for microstructure evolution, Annu. Rev. Mater. Res. 32, 113–140 (2002)

    Article  Google Scholar 

  5. M. Ode, S.G. Kim, T. Suzuki: Recent Advances in the phase-field model for solidification, Iron Steel Inst. Jpn. Int. 41, 1076–1082 (2001)

    Article  Google Scholar 

  6. H. Emmerich: The Diffuse Interface Approach in Materials Science (Springer, Berlin, Heidelberg 2003)

    Google Scholar 

  7. D. Raabe: Computational Materials Science (Wiley-VCH, Weinheim 1998)

    Book  Google Scholar 

  8. J.J. Robinson (Ed.): Solidification and microstructure, J. Min. Met. Mater. Soc. 56(4), 16–68 (2004)

    Google Scholar 

  9. J.A. Warren, W.J. Boettinger: Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phase-field method, Acta Metall. Mater. 43, 689–703 (1995)

    Article  Google Scholar 

  10. A. Karma, W.-J. Rappel: Quantitative phase-field modeling of dendritic growth in two and three dimensions, Phys. Rev. E 57, 4323–4349 (1998)

    Article  Google Scholar 

  11. S.G. Kim, W.T. Kim, T. Suzuki: Phase-field model for binary alloys, Phys Rev. E 60, 7186–7197 (1999)

    Article  Google Scholar 

  12. T. Suzuki, M. Ode, S.G. Kim: Phase-field model of dendritic growth, J. Cryst. Growth 237–239, 125–131 (2002)

    Article  Google Scholar 

  13. T. Miyazaki, T. Koyama: Computer simulations of the phase transformation in real alloy systems based on the phase field method, Mater. Sci. Eng. A 312, 38–49 (2001)

    Article  Google Scholar 

  14. T. Koyama: Computer simulation of phase decomposition in two dimensions based on a discrete type non-linear diffusion equation, 39, 169–178 (1998)

    Google Scholar 

  15. J.Z. Zhu, T. Wang, A.J. Ardell, S.H. Zhou, Z.K. Liu, L.Q. Chen: Three-dimensional phase-field simulations of coarsening kinetics of γ′ particles in binary Ni-Al alloys, Acta Mater. 52, 2837–2845 (2004)

    Article  Google Scholar 

  16. C.E. Krill III, L.-Q. Chen: Computer simulation of 3-D grain growth using a phase-field model, Acta Mater. 50, 3059–3075 (2002)

    Article  Google Scholar 

  17. A.E. Lobkovsky, J.A. Warren: Phase-field model of crystal grains, J. Cryst. Growth 225, 282–288 (2001)

    Article  Google Scholar 

  18. J.A. Warren, R. Kobayashi, W.C. Carter: Modeling grain boundaries using a phase-field technique, J. Cryst. Growth 211, 18–20 (2000)

    Article  Google Scholar 

  19. T. Miyazaki: Recent developments and the future of computational science on microstructure formation, Mater. Trans. 43, 1266–1272 (2002)

    Article  Google Scholar 

  20. J. Wang, S.-Q. Shi, L.-Q. Chen, Y. Li, T.-Y. Zhang: Phase-field simulations of ferroelectric/ferroelastic polarization switching, Acta Mater. 52, 749–764 (2004)

    Article  Google Scholar 

  21. Y.L. Li, S.Y. Hu, Z.K. Liu, L.-Q. Chen: Effect of substrate constraint on the stability and evolution of ferroelectric domain structures in thin films, Acta Mater. 50, 395–411 (2002)

    Article  Google Scholar 

  22. Y.M. Jin, A. Artemev, A.G. Khachaturyan: Three-dimensional phase field model of low-symmetry martensitic transformation in polycrystal: Simulation of ζ2 martensite in AuCd alloys, Acta Mater. 49, 2309–2320 (2001)

    Article  Google Scholar 

  23. Y.U. Wang, Y.M. Jin, A.M. Cuitino, A.G. Khachaturyan: Nanoscale phase field microelasticity theory of dislocations: Model and 3D simulations, Acta Mater. 49, 1847–1857 (2001)

    Article  Google Scholar 

  24. D. Rodney, Y. Le Bouar, A. Finel: Phase field methods and dislocations, Acta Mater. 51, 17–30 (2003)

    Article  Google Scholar 

  25. S.Y. Hu, L.-Q. Chen: A phase-field model for evolving microstructures with strong elastic inhomogeneity, Acta Mater. 49, 1879–1890 (2001)

    Article  Google Scholar 

  26. Y.U. Wang, Y.M. Jin, A.G. Khachaturyan: Phase field microelasticity theory and simulation of multiple voids and cracks in single crystals and polycrystals under applied stress, J. Appl. Phys. 91, 6435–6451 (2002)

    Article  Google Scholar 

  27. J.S. Rowlinson: Translation of J.D. van der Waalsʼ “The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density”, J. Stat. Phys. 20, 197–244 (1979)

    Article  Google Scholar 

  28. W.C. Carter, W.C. Johnson (Eds.): The Selected Works of J.W. Cahn (Min. Met. Mater. Soc., Warrendale 1998)

    Google Scholar 

  29. H.I. Aaronson (Ed.): Phase Transformation (ASM, Metals Park 1970) p. 497

    Google Scholar 

  30. C. Kittel, H. Kroemer: Thermal Physics (Freeman, New York 1980)

    Google Scholar 

  31. D. Fan, L.-Q. Chen: Topological evolution during coupled grain growth and Ostwald ripening in volume-conserved 2-D two-phase polycrystals, Acta Mater. 45, 4145–4154 (1997)

    Article  Google Scholar 

  32. D. Fan, L.-Q. Chen: Possibility of spinodal decomposition in yttria-partially stabilized zirconia (ZrO_2-Y_2O_3) system – A theoretical investigation, J. Am. Ceram. Soc. 78, 1680–1686 (1995)

    Article  Google Scholar 

  33. N. Saunders, A.P. Miodownik: CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide (Pergamon, New York 1998)

    Google Scholar 

  34. S.M. Allen, J.W. Cahn: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall. Mater. 27, 1085–1095 (1979)

    Article  Google Scholar 

  35. J.J. Eggleston, G.B. McFadden, P.W. Voorhees: A phase-field model for highly anisotropic interfacial energy, Physica D 150, 91–103 (2001)

    Article  Google Scholar 

  36. I. Steinbach, F. Pezzolla, B. Nestler, M. Seeselberg, R. Prieler, G.J. Schmitz, J.L.L. Rezende: A phase field concept for multiphase systems, Physica D 94, 135–147 (1996)

    Article  Google Scholar 

  37. A. Khachaturyan: Theory of Structural Transformations in Solids (Wiley, New York 1983)

    Google Scholar 

  38. T. Mura: Micromechanics of Defects in Solids, 2nd edn. (Kluwer, Dordrecht 1991)

    Google Scholar 

  39. L.-Q. Chen, J. Shen: Applications of semi-implicit Fourier-spectral method to phase field equations, Comput. Phys. Commun. 108, 147–158 (1998)

    Article  Google Scholar 

  40. P.H. Leo, J.S. Lowenngrub, H.J. Jou: A diffuse interface model for microstructural evolution in elastically stressed solids, Acta Mater. 46, 2113–2130 (1998)

    Article  Google Scholar 

  41. M.E. Glicksman: Diffusion in Solids (Wiley, New York 2000)

    Google Scholar 

  42. M. Doi, T. Koyama, T. Kozakai: Experimental and theoretical investigation of the phase decomposition in ZrO_2-YO_1.5 system, Proc. Fourth Pac. Rim Int. Conf. Adv. Mater. Process (PRICM 4), Honolulu 2001, ed. by S. Hanada, Z. Zhong, S.W. Nam, R.N. Wright (The Japan Institute of Metals, Sendai 2001) 741–744

    Google Scholar 

  43. K. Otsuka, C.M. Wayman (Eds.): Shape Memory Materials (Cambridge Univ. Press, Cambridge 1998)

    Google Scholar 

  44. T. Koyama, H. Onodera: Phase-field simulation of microstructure changes in Ni_2MnGa ferromagnetic alloy under external stress and magnetic fields, Mater. Trans. JIM 44, 2503–2508 (2003)

    Article  Google Scholar 

  45. T. Koyama, H. Onodera: Modeling of microstructure changes in FePt nano-granular thin films using the phase-field method, Mater. Trans. JIM 44, 1523–1528 (2003)

    Article  Google Scholar 

  46. Y.K. Takahashi, T. Koyama, M. Ohnuma, T. Ohkubo, K. Hono: Size dependence of ordering in FePt nanoparticles, J. Appl. Phys. 95, 2690–2696 (2004)

    Article  Google Scholar 

  47. A. Hubert, R. Schafer: Magnetic Domains (Springer, Berlin, Heidelberg 1998)

    Google Scholar 

  48. H. Kronmüller, M. Fähnle: Micromagnetism and the Microstructure of Ferromagnetic Solids (Cambridge Univ. Press, Cambridge 2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Koyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag

About this chapter

Cite this chapter

Koyama, T. (2011). Phase Field Approach. In: Czichos, H., Saito, T., Smith, L. (eds) Springer Handbook of Metrology and Testing. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16641-9_21

Download citation

Publish with us

Policies and ethics