Advertisement

Intelligent Methods for Scheduling in Transportation

  • Ma Belén Vaquerizo García
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 85)

Abstract

So, the main purpose of this work is to propose an efficient method for determine optimal shifts in transportation, for any local public transportation companies. The objective of it is to minimize the cost of the shifts programmed in the temporary horizon considered (day, week, month,..), with the restriction of having enough number of drivers in all periods of times to satisfy the demand required. This problem has been solved using two Grasp Metaheuristic and a Bio-inspired Algorithm.

Keywords

Bus Driver Scheduling Problem Genetic Algorithm Grasp Combinatorial Complexity Driver shifts Labor Scheduling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brusco, M.J., Jacobs, L.W.: Personnel tour scheduling when starting time restrictions are present. Management Science 44, 534–547 (1998)zbMATHCrossRefGoogle Scholar
  2. 2.
    D’Annibale, G., De Leone, R., Festa, P., Marchitto, E.: A new meta-heuristic for the Bus Driver Scheduling Problem: GRASP combined with Rollout. In: Proceedings of the 2007 IEEE Symposium on Computational Intelligence in Scheduling (2007)Google Scholar
  3. 3.
    De Leone, R., Festa, P., Marchitto, E.: The Bus Driver Scheduling Problem: a new mathematical model and a GRASP approximate solution. Tech. Rep. 22, University of Napoli, Federico II (2006)Google Scholar
  4. 4.
    Esclapés, P.C.: Asignación de conductores a jornadas de trabajo en empresas de transporte colectivo, http://www.tdr.cesca.es/TESIS_UPC/AVAILABLE/TDX-1022101-084109
  5. 5.
    Feo, T., Resende, M.: Greedy randomized adaptive search procedures. Journal of Global Optimization 6, 109–133 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Józefczyk, J., Markowski, M.: Heuristic Algorithms for Solving Uncertain Routing-Scheduling Problem. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 1052–1063. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Marchitto, E.: The Bus Driver Scheduling Problem: a new mathematical model and several alternative meta-heuristic algorithms. PhD thesis, University of Rome La Sapienza, Dipartimento di Statistica, Probabilit‘ a e Statistiche Applicate (2006)Google Scholar
  8. 8.
    Ramalhinho, H., Pinto Paixao, J., Portugal, R.: Metaheuristics for The Bus-Driver Scheduling Problem (1950), http://hdl.handle.net/2072/450
  9. 9.
    Thompson, G.M.: Optimal scheduling of shifts and breaks using employees having limited time-availability. Journal of Operations Management (1996)Google Scholar
  10. 10.
    Vaquerizo, G.M., Casado, Y.S., Pacheco, B.J.: Labor Scheduling Problem en el Campo del Transporte Urbano Mediante Estrategias Metaherurísticas. Iwpaams (2004) ISBN 84-96394-07-7: 266-275Google Scholar
  11. 11.
    Wall, M.: A Genetic Algorithm for Resource-Constrained Scheduling. Thesis. Massachusetts Institute of Technology (1996)Google Scholar
  12. 12.
    Wren, A., Wren, D.O.: A genetic algorithm for public transport driver scheduling. Computers and Operations Research 22(1) (1995)Google Scholar
  13. 13.
    Xuefeng, Y., Bala, R., Xiaochun, J.: Parameter setting in a bio-inspired model for dynamic flexible job shop scheduling with sequence-dependent setups. Article provided by Inderscience Enterprises Ltd in its journal European Journal of Industrial Engineering 1, 182–199 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ma Belén Vaquerizo García
    • 1
  1. 1.Languages and Systems AreaBurgos UniversityBurgos

Personalised recommendations