Advertisement

Trident, a New Pseudo Random Number Generator Based on Coupled Chaotic Maps

  • Amalia Beatriz Orúe López
  • Gonzalo Álvarez Marañon
  • Alberto Guerra Estévez
  • Gerardo Pastor Dégano
  • Miguel Romera García
  • Fausto Montoya Vitini
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 85)

Abstract

This article describes a new family of cryptographically secure pseudorandom number generators, based on coupled chaotic maps, that will serve as keystream in a stream cipher. The maps are a modification of a piecewise linear map, by dynamic changing of the coefficient values and perturbing its lesser significant bits.

Keywords

Chaos stream cipher PRNG 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Klein, A.: Attacks on the RC4 stream cipher. Design. Code. Cryptogr. 48(3), 269–286 (2008)zbMATHCrossRefGoogle Scholar
  2. 2.
    Goldberg, I., Wagner, I.: Randomness and the Netscape browser. Dr. Dobb’s Journal, 66–70 (1996)Google Scholar
  3. 3.
    Gutterman, Z., Pinkas, B., Reinman, T.: Analysis of the Linux Random Number Generator. In: Proceedings of the 2006 IEEE Symposium on Security and Privacy, pp. 371–385 (2006)Google Scholar
  4. 4.
    Dorrendorf, L., Gutterman, Z., Pinkas, B.: Cryptanalysis of the random number generator of the Windows operating system. ACM T. Inform. System 13(1), 10:1–10:32 (2009)Google Scholar
  5. 5.
    Blum, L., Blum, M., Shub, M.: A simple unpredictable pseudo-random number generator. SIAM J. Comput. 15, 364–383 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Alvarez, G., Montoya, F., Romera, M., Pastor, G.: Cryptanalysis of a chaotic encryption system. Phys. Lett. A 276(1-4), 191–196 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Alvarez, G., Li, S.: Some basic cryptographic requirements for chaos-based cryptosystems. Int. J. Bifurcat. Chaos 16(8), 2129–2151 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Orue, A.B., et al.: Determination of the parameters for a Lorenz system and application to break the security of two-channel chaotic cryptosystems. Phys. Lett. A 372, 5588–5592 (2008)CrossRefGoogle Scholar
  9. 9.
    Knuth, D.E.: The Art of Computer Programming, 3rd edn. Seminumerical Algorithms, vol. 2. Addison-Wesley, Reading (1997)Google Scholar
  10. 10.
    Bellare, M., Goldwasser, S., Micciancio, D.: Pseudo-random number generation within cryptographic algorithms: The dds case. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 277–291. Springer, Heidelberg (1997)Google Scholar
  11. 11.
    Rukhin, A., et al.: A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications revision, 1st edn. National Institute of Standards and Technology (NIST), U.S. Department of Commerce (2008)Google Scholar
  12. 12.
    Marsaglia, G., Tsang, W.W.: Some difficult-to-pass tests of randomness. J. Stat. Softw. 7(3), 1–9 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Amalia Beatriz Orúe López
    • 1
  • Gonzalo Álvarez Marañon
    • 1
  • Alberto Guerra Estévez
    • 1
  • Gerardo Pastor Dégano
    • 1
  • Miguel Romera García
    • 1
  • Fausto Montoya Vitini
    • 1
  1. 1.Instituto de Física AplicadaCSICMadridSpain

Personalised recommendations