Face Processing for Security: A Short Review

  • Ion Marqués
  • Manuel Graña
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 85)


In this paper we give a fast fly over the face image preocessing issue, taking special care to highlight the security related applications. Face detection is the first step for the face recognition systems, posing its own challenges. Face recognition is essentially a classification problem, which can be a large multiclass problem. The emphasis in this paper is the of review the different computational approaches instead of the concrete applications.


Face Recognition Face Detection Face Processing Convolutional Neural Network Locality Preserve Projection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    El Aroussi, M., El Hassouni, M., Ghouzali, S., Rziza, M., Aboutajdine, D.: Local appearance based face recognition method using block based steerable pyramid transform. Signal Processing (2010) (in Press, Corrected Proof)Google Scholar
  2. 2.
    Ballantyne, M., Boyer, R.S., Hines, L.: Woody bledsoe: His life and legacy. AI Magazine 17(1), 7–20 (1996)Google Scholar
  3. 3.
    Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(7), 711–720 (1997)CrossRefGoogle Scholar
  4. 4.
    Bevilacqua, V., Cariello, L., Carro, G., Daleno, D., Mastronardi, G.: A face recognition system based on pseudo 2d hmm applied to neural network coefficient. Soft Computing - A Fusion of Foundations, Methodologies and Applications 12(7), 615–621 (2007)Google Scholar
  5. 5.
    Bhuiyan, A.-A., Liu, C.H.: On face recognition using gabor filters. In: Proceedings of World Academy of Science, Engineering and Technology, vol. 22, pp. 51–56 (2007)Google Scholar
  6. 6.
    Blanz, V., Vetter, T.: Face recognition based on fitting a 3d morphable model. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(9), 1063–1074 (2003)CrossRefGoogle Scholar
  7. 7.
    Bledsoe, W.W.: The model method in facial recognition. Technical report pri 15, Panoramic Research, Inc., Palo Alto, California (1964)Google Scholar
  8. 8.
    Bledsoe, W.W.: Man-machine facial recognition: Report on a large-scale experiment. Technical report pri 22, Panoramic Research, Inc., Palo Alto, California (1966)Google Scholar
  9. 9.
    Bledsoe, W.W.: Some results on multicategory patten recognition. Journal of the Association for Computing Machinery 13(2), 304–316 (1966)zbMATHGoogle Scholar
  10. 10.
    Bledsoe, W.W.: Semiautomatic facial recognition. Technical report sri project 6693, Stanford Research Institute, Menlo Park, California (1968)Google Scholar
  11. 11.
    Bledsoe, W.W., Chan, H.: A man-machine facial recognition system-some preliminary results. Technical report pri 19a, Panoramic Research, Inc., Palo Alto, California (1965)Google Scholar
  12. 12.
    Brunelli, R., Poggio, T.: Face recognition: Features versus templates. IEEE Transactions on Pattern Analysis and Machine Intelligence 15(10), 1042–1052 (1993)CrossRefGoogle Scholar
  13. 13.
    Cai, D., He, X., Han, J.: Semi-supervised discriminant analysis. In: IEEE 11th International Conference on Computer Vision, vol. 14, pp. 1–7 (2007)Google Scholar
  14. 14.
    Chellappa, R., Sinha, P., Jonathon Phillips, P.: IEEE Computer, vol. 43(2), pp. 46–55 (2010)Google Scholar
  15. 15.
    Deng, W., Hu, J., Guo, J., Cai, W., Feng, D.: Emulating biological strategies for uncontrolled face recognition. Pattern Recognition 43(6), 2210–2223 (2010)zbMATHCrossRefGoogle Scholar
  16. 16.
    Baek, K., et al.: Multiple Face Tracking Using Kalman Estimator Based Color SSD Algorithm. In: Zhang, S., Jarvis, R.A. (eds.) AI 2005. LNCS (LNAI), vol. 3809, pp. 1229–1232. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Franco, A., Maio, D., Maltoni, D.: Incremental template updating for face recognition in home environments. Pattern Recognition 43(8), 2891–2903 (2010)zbMATHCrossRefGoogle Scholar
  18. 18.
    Hallinan, P.: A Deformable Model for Face Recognition Under Arbitrary Lighting Conditions. PhD thesis, Univesity of Harvard (1995)Google Scholar
  19. 19.
    He, X., Niyogi, P.: Locality preserving projections. In: Proceedings of the Conference on Advances in Nerual Information Processing Systems (2003)Google Scholar
  20. 20.
    Heusch, G., Marcel, S.: A novel statistical generative model dedicated to face recognition. Image and Vision Computing 28(1), 101–110 (2010)CrossRefGoogle Scholar
  21. 21.
    Hsieh, C.-K., Lai, S.-H., Chen, Y.-C.: An optical flow-based approach to robust face recognition under expression variations. IEEE Transactions on Image Processing 19(1), 233–240 (2010)CrossRefGoogle Scholar
  22. 22.
    Huang, J., Gutta, S., Wechsler, H.: Detection of human faces using decision trees. In: Proc. Second International Conf. Automatic Face and Gesture Recognition, pp. 248–252 (1996)Google Scholar
  23. 23.
    Jain, A.K., Duin, R.P.W., Mao, J.: Statistical pattern recognition: A review. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(1), 4–37 (2000)CrossRefGoogle Scholar
  24. 24.
    Kare, S., Samal, A., Marx, D.: Using bidimensional regression to assess face similarity. Machine Vision and Applications 21(3), 261–274 (2008)CrossRefGoogle Scholar
  25. 25.
    Kenade, T.: Picture Processing System by Computer Complex and Recognition of Human Faces. PhD thesis, Kyoto University (November 1973)Google Scholar
  26. 26.
    Kim, S.-K., Park, Y.J., Toh, K.-A., Lee, S.: Svm-based feature extraction for face recognition. Pattern Recognition 43(8), 2871–2881 (2010)zbMATHCrossRefGoogle Scholar
  27. 27.
    Kotropoulos, C., Pitas, I.: Rule-based face detection in frontal views. In: Proc. of IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP 1997), vol. IV, pp. 2537–2540 (1997)Google Scholar
  28. 28.
    Lawrence, S., Giles, C.L., Tsoi, A.C., Back, A.D.: Face recognition: A convolutional neural network approach. IEEE Transactions on Neural Networks 8, 98–113 (1997)CrossRefGoogle Scholar
  29. 29.
    Lu, J., Plataniotis, K.N., Venetsanopoulos, A.N.: Face recognition using kernel linear discriminant algorithms. IEEE Trans. on Neural Networks 14(1), 117–126 (2003)CrossRefGoogle Scholar
  30. 30.
    Lu, J., Plataniotis, K.N., Venetsanopoulos, A.N., Li, S.Z.: Ensemble-based discriminant learning with boosting for face recognition. IEEE Transactions on Neural Networks 17(1), 166–178 (2006)CrossRefGoogle Scholar
  31. 31.
    Nefian, A.V.: Embedded bayesian networks for face recognition. In: Proc. of the IEEE International Conference on Multimedia and Expo., Lusanne, Switzerland, vol. 2, pp. 133–136 (August 2002)Google Scholar
  32. 32.
    Nefian, A.V., Hayes, M.H.: Hidden markov models for face recognition. In: Proc. of the IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 1998, Washington, USA, vol. 5, pp. 2721–2724 (May 1998)Google Scholar
  33. 33.
    Song, X.N., Zheng, Y.J., Wu, X.J., Yang, X.B., Yang, J.Y.: A complete fuzzy discriminant analysis approach for face recognition. Applied Soft Computing 10(1), 208–214 (2010)CrossRefGoogle Scholar
  34. 34.
    Nixon, M.: Eye spacing measurement for facial recognition. In: Proceedings of the Society of Photo-Optical Instrument Engineers, SPIE, vol. 575(37), pp. 279–285 (August 1985)Google Scholar
  35. 35.
    Osuna, E., Freund, R., Girosi, F.: Training support vector machines: An application to face detection. In: Proceedings of the IEEE Conf. Computer Vision and Pattern Recognition, pp. 130–136 (June 1997)Google Scholar
  36. 36.
    Qiao, L., Chen, S., Tan, X.: Sparsity preserving discriminant analysis for single training image face recognition. Pattern Recognition Letters 31(5), 422–429 (2010)CrossRefGoogle Scholar
  37. 37.
    Raphael, F., Olivier, B., Daniel, C.: A constrained generative model applied to face detection. Neural Processing Letters 5(2), 11–19 (1997)CrossRefGoogle Scholar
  38. 38.
    Ren, C.-X., Dai, D.-Q.: Incremental learning of bidirectional principal components for face recognition. Pattern Recognition 43(1), 318–330 (2010)zbMATHCrossRefGoogle Scholar
  39. 39.
    Rowley, H.A., Baluja, S., Kanade, T.: Neural network-based face detection. IEEE trans. Pattern Analysis and Machine Intelligence 20(1), 23–38 (1998)CrossRefGoogle Scholar
  40. 40.
    Singh, R., Vatsa, M., Noore, A.: Face recognition with disguise and single gallery images. Image and Vision Computing 27(3), 245–257 (2009); Special Issue on Multimodal Biometrics - Multimodal Biometrics Special IssueCrossRefGoogle Scholar
  41. 41.
    Stonham, T.J.: Practical face recognition and verification with wisard. In: Ellis, H.D. (ed.) Aspects of face processing. Kluwer Academic Publishers, Dordrecht (1986)Google Scholar
  42. 42.
    Tenllado, C., Gómez, J.I., Setoain, J., Mora, D., Prieto, M.: Improving face recognition by combination of natural and gabor faces. Pattern Recognition Letters 31(11), 1453–1460 (2010)CrossRefGoogle Scholar
  43. 43.
    Tulyakov, S.: Review of classifier combination methods. Studies in Computational Intelligence (SCI) 90, 361–386 (2008)CrossRefGoogle Scholar
  44. 44.
    Turk, M., Pentland, A.: Eigenfaces for recognition. Journal of Cognitive Neurosicence 3(1), 71–86 (1991)CrossRefGoogle Scholar
  45. 45.
    Wan-zeng, K., Shanan, Z.: Multi-face detection based on downsampling and modified subtractive clustering for color images. Journal of Zhejiang University Science A 8(1), 72–78 (2007)CrossRefGoogle Scholar
  46. 46.
    Xu, C., Li, S., Tan, T., Quan, L.: Automatic 3d face recognition from depth and intensity gabor features. Pattern Recognition 42(9), 1895–1905 (2009)zbMATHCrossRefGoogle Scholar
  47. 47.
    Yambor, W.S.: Analysis of PCA-based and Fisher Discriminant-Based Image Recognition Algorithms. Technical report cs-00-103, Computer Science Department, Colorado State University (July 2000)Google Scholar
  48. 48.
    Yu, L., He, Z., Cao, Q.: Gabor texture representation method for face recognition using the gamma and generalized gaussian models. Image and Vision Computing 28(1), 177–187 (2010)CrossRefGoogle Scholar
  49. 49.
    Zhang, B., Gao, Y., Zhao, S., Liu, J.: Local derivative pattern versus local binary pattern: Face ecognition with high-order local pattern descriptor. IEEE Transactions on Image Processing 19(2), 533–544 (2010)CrossRefGoogle Scholar
  50. 50.
    Zhao, S., Gao, Y., Zhang, B.: Gabor feature constrained statistical model for efficient landmark localization and face recognition. Pattern Recognition Letters 30(10), 922–930 (2009)CrossRefGoogle Scholar
  51. 51.
    Zhao, W.Y., Chellappa, R.: Image-based face recognition: Issues and methods. In: Dekker, M., Javidi, B. (eds.) Image Recognition and Classification, pp. 375–402. Marcel Dekker, Inc., New York (2002)Google Scholar
  52. 52.
    Zhou, D., Tang, Z.: Kernel-based improved discriminant analysis and its application to face recognition. Soft Computing - A Fusion of Foundations, Methodologies and Applications 14(2), 103–111 (2009)Google Scholar
  53. 53.
    Zhou, S., Chellappa, R.: Multiple-exemplar discriminant analysis for face recognition. In: Proc. of the 17th International Conference on Pattern Recognition, ICPR 2004, Cambridge, UK, pp. 191–194 (August 2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ion Marqués
    • 1
  • Manuel Graña
    • 1
  1. 1.Computational Intelligence GroupUniversidad del Pais Vasco 

Personalised recommendations