Skip to main content

4WD Skid-Steer Trajectory Control of a Rover with Spring-Based Suspension Analysis

Direct and Inverse Kinematic Parameters Solution

  • Conference paper
Intelligent Robotics and Applications (ICIRA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6424))

Included in the following conference series:

Abstract

This manuscript provides a solution to the problem of four-wheel drive (4WD) kinematics and dynamics for trajectory control of an in-wheel motors rover. The rover is a platform built up in our laboratory, featured by its damper devices. The rover wheels’ contact point have dynamic positions as effects of spring-based suspension devices damper. The tracking control is a four-wheel drive skid-steering (4WDSS) system, and we propose a motion control fundamentally defining a dynamic turning z-axis, which moves within the area of the four wheels’ contact point. We provide a general solution for this mechanical design since the wheels’ contact point displacement directly impacts the rover angular velocity. Furthermore, we introduce a model for inertial localization based on an arrangement of two accelerometers to define the rover position within a global inertial frame.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ki, K., Wang, S., Di, H., Li, H.: Trajectory tracking control wheeled mobile robots based on integrated intelligent steering. In: IEEE ICEMI 2009, pp. 3-955–3-960 (2009)

    Google Scholar 

  2. Solea, R., Filipescu, A., Nunes, U.: Sliding-mode control for trajectory-tracking of a wheeled mobile robot in presence of uncertainties. In: Proc. of the 7th Asian Control Conference, Hong Kong, China, August 27-29, pp. 1701–1706 (2009)

    Google Scholar 

  3. Zhao, Y., Zhang, Y., Zhao, Y.: Stability control system for four-in-wheel-motor drive electric vehicle. In: IEEE 6th Intl. Conf. on Fuzzy Systems and Knowledge Discovery, pp. 171–175 (2009)

    Google Scholar 

  4. Silva-Ortigoza, R., Silva-Ortigoza, G., Hernandez-Guzman, V., Barrientos-Sotelo, R., Albarrán-Jiménez, Silva-Garcia, V.: Trajectory tracking in a mobile robot without using velocity measurement for control of wheels. IEEE Latin America Transaction 6(7), 598–607 (2008)

    Article  Google Scholar 

  5. Kozlowski, K., Pazderski, D.: Practical stabilization of a skid-steering mobile robot - A kinematic-based approach. In: IEEE Intl. Conf. on Mechatronics, pp. 519–524 (2006)

    Google Scholar 

  6. Caracciolo, L., De Luca, A., Iannitti, S.: Trajectory Tracking Control of a Four-Wheel Differentially Driven Mobile Robot. In: Proc. IEEE Intl. Conf. on Robotics and Automation, Detroit, Michigan, USA, pp. 2632–2638 (May 1999)

    Google Scholar 

  7. Mandow, A., Martínez, J.L., Morales, J., Blanco, J.L., García-Cerezo, A., González, J.: Experimental Kinematics for Wheeled Skid-Steer Mobile Robots. In: Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2007, San Diego, California, pp. 1222–1227 (2007)

    Google Scholar 

  8. Kozlowski, K.: Modelling and control of a 4-wheel skid-steering mobile robot. Int. J. Appl. Math Comput. Sci. 14(4), 477–496 (2004)

    MathSciNet  MATH  Google Scholar 

  9. Campion, G., Baston, G., Andrea-Novel, B.D.: Structural properties and classification of kinematic and dynamic models of wheeled mobile robots. IEEE Transaction on Robotics and Automation 12(1) (February 1996)

    Google Scholar 

  10. Wang, D., Low, C.B.: Modeling and analysis of skidding and slipping wheeled mobile robots: control design perspective. IEEE Transactions on Robotics 24(3), 676–687 (2008)

    Google Scholar 

  11. Macek, K., Thoma, K., Glatzel, R., Siewart, R.: Dynamics modeling and parameter identification for autonomous vehicle navigation. In: Proc. of the 2007 IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, pp. 3321–3326 (2007)

    Google Scholar 

  12. Antonelli, G., Chiaverini, S.: Linear estimation of the odometric parameters for differential-drive mobile robots. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3287–3292 (2006)

    Google Scholar 

  13. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  14. Beer, F.P., Johnson, E.R., Eisenberg, E.R., Sarubbi, R.G.: Vector mechanics for engineers dynamics, ch. 15m, 5th edn., pp. 722–723. Mc Graw Hill, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Martínez-García, E., Torres-Córdoba, R. (2010). 4WD Skid-Steer Trajectory Control of a Rover with Spring-Based Suspension Analysis. In: Liu, H., Ding, H., Xiong, Z., Zhu, X. (eds) Intelligent Robotics and Applications. ICIRA 2010. Lecture Notes in Computer Science(), vol 6424. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16584-9_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16584-9_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16583-2

  • Online ISBN: 978-3-642-16584-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics