Development of an Anthropomorphic Prosthetic Hand for Man-Machine Interaction

  • Nan Li
  • Li Jiang
  • Dapeng Yang
  • Xinqing Wang
  • Shaowei Fan
  • Hong Liu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6424)

Abstract

This paper presents a novel highly integrated prosthetic hand equipped with a man-machine interface for performing good grasping features. The hand has five fingers and each of them can be driven individually by the embedded actuation and control system fitted in the palm. By using the man-machine interface, users can control the prosthetic hand by means of their EMG signals and get grasp force feeling through the sensory feedback system designed based on surface electrical stimulus. At the end of this paper, a grasping trial is presented to verify the ability of interaction between the human body and the prosthetic hand.

Keywords

Prosthetic hand Man-machine interface Sensory feedback Embedded control system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Cipriani, C., Zaccone, F., Stellin, G., Beccai, L., Cappiello, G., Carrozza, M.C., Dario, P.: Closed-loop Controller for a Bio-inspired Multi-fingered Underactuated Prosthesis. In: Proceedings of 2006 IEEE International Conference on Robotics and Automation, pp. 2111–2116. IEEE Press, New York (2006)Google Scholar
  3. 3.
    Carrozza, M.C., Cappiello, G., Micera, S., Edin, B.B., Beccai, L., Cipriani, C.: Design of a Cybernetic Hand for Perception and Action. Biological Cybernetics 95(6), 629–644 (2006)CrossRefMATHGoogle Scholar
  4. 4.
    Lake, C., Miguelez, J.M.: Evolution of Microprocessor Based Control Systems in Upper Extremity Prosthetics. Technology and Disability 2(15), 63–67 (2003)Google Scholar
  5. 5.
    Cipriani, C., Zaccone, F., Micera, S., Carrozza, M.C.: On the Shared Control of an EMG-Controlled Prosthetic Hand Analysis of User-prosthesis Interaction. IEEE Transactions on Robotics 24(1), 170–184 (2008)CrossRefGoogle Scholar
  6. 6.
    Hernandez Arieta, A., Kato, R., Yokoi, H., Yu, W.W.: Development of a Multi-DOF Electromyography Prosthetic System Using the Adaptive Joint Mechanism. Applied Bionics and Biomechanics 3(2), 101–112 (2006)CrossRefGoogle Scholar
  7. 7.
    Kato, R., Yokoi, H., Hernandez Arieta, A., Yu, W.W., Arai, T.: Mutual Adaptation Among Man and Machine by Using f-MRI Analysis. Robotics and Autonomous Systems 57(2), 161–166 (2009)CrossRefGoogle Scholar
  8. 8.
    Castellini, C., Van Der Smagt, P.: Surface EMG in Advanced Hand Prosthetics. Biological Cybernetics 100, 35–47 (2009)CrossRefGoogle Scholar
  9. 9.
    Yang, D.P., Zhao, J.D., Gu, Y.K., Wang, X.Q., Li, N., Jiang, L., Liu, H., Huang, H., Zhao, D.W.: An Anthropomorphic Robot Hand Developed Based on Underactuated Mechanism and Controlled by EMG Signals. Journal of Bionic Engineering 6(3), 255–263 (2009)CrossRefGoogle Scholar
  10. 10.
    Hsu, C.W., Lin, C.J.: A Comparison of Methods for Multi-class Support Vector Machines. IEEE Transactions on Neural Networks 13, 415–425 (2002)CrossRefGoogle Scholar
  11. 11.
    Scott, R.N., Caldwell, R.R., Brittain, R.H.: Sensory-feedback System Compatible with Myoelectric Control. Medical and Biological Engineering and Computing 18(1), 65–69 (1980)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Nan Li
    • 1
  • Li Jiang
    • 1
  • Dapeng Yang
    • 1
  • Xinqing Wang
    • 1
  • Shaowei Fan
    • 1
  • Hong Liu
    • 2
  1. 1.State Key Laboratory of Robotics and SystemHarbin Institute of TechnologyHarbinChina
  2. 2.Institute of Robotics and MechatronicsGerman Aerospace CenterMunichGermany

Personalised recommendations