Advertisement

On Handling Data in Automata Learning

Considerations from the CONNECT Perspective
  • Falk Howar
  • Bengt Jonsson
  • Maik Merten
  • Bernhard Steffen
  • Sofia Cassel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6416)

Abstract

Most communication with real-life systems involves data values being relevant to the communication context and thus influencing the observable behavior of the communication endpoints. When applying methods from the realm of automata learning, it is necessary to handle such data-occurrences. In this paper, we consider how the techniques of automata learning can be adapted to the problem of learning interaction models in which data parameters are an essential element. Especially, we will focus on how test-drivers for real-word systems can be generated automatically. Our main contribution is an analysis of (1) the requirements on information contained in models produced by the learning enabler in the Connect project and (2) the resulting preconditions for generating test-drivers automatically.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aarts, F., Blom, J., Bohlin, T., Chen, Y.-F., Howar, F., Jonsson, B., Merten, M., Nagel, R., Sabetta, A., Soleimanifard, S., Steffen, B., Uijen, J., Wilk, T., Windmuller, S.: Establishing basis for learning algorithms (2010)Google Scholar
  2. 2.
    Aarts, F., Jonsson, B., Uijen, J.: Generating Models of Infinite-State Communication Protocols using Regular Inference with Abstraction. Accepted for ICTSS 2010 (2010)Google Scholar
  3. 3.
    Aarts, F., Vaandrager, F.: Learning I/O Automata. Accepted for CONCUR 2010 (2010)Google Scholar
  4. 4.
    Akkiraju, R., Farrell, J., Miller, J., Nagarajan, M., Schmidt, M., Sheth, A., Verma, K.: Web service semantics-WSDL-S. W3C member submission, 7 (2005)Google Scholar
  5. 5.
    Angluin, D.: Learning Regular Sets from Queries and Counterexamples. Information and Computation 75(2), 87–106 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bennaceur, A., Blair, G.S., Chauvel, F., Georgantas, N., Grace, P., Howar, F., Inverardi, P., Issarny, V., Paolucci, M., Pathak, A., Spalazzese, R., Steffen, B., Souville, B.: Towards an Architecture for Runtime Interoperability. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010, Part II. LNCS, vol. 6416, pp. 206–220. Springer, Heidelberg (2010)Google Scholar
  7. 7.
    Berg, T., Jonsson, B., Raffelt, H.: Regular inference for state machines with parameters. In: Baresi, L., Heckel, R. (eds.) FASE 2006. LNCS, vol. 3922, pp. 107–121. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Berg, T., Jonsson, B., Raffelt, H.: Regular Inference for State Machines Using Domains with Equality Tests. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961, pp. 317–331. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Bertolino, A., Blair, G., Chauvel, F., Cortes, C.F., Georgantas, N., Grace, P., Howar, F., Huyn, T., Jonsson, B., Paolucci, M., Pathak, A., Souville, B., Tivoli, M.: Initial CONNECT Architecture. Technical report, 02 (2010)Google Scholar
  10. 10.
    Bertolino, A., Inverardi, P., Pelliccione, P., Tivoli, M.: Automatic synthesis of behavior protocols for composable web-services. In: ESEC/FSE 2009: Proceedings of the the 7th joint meeting of the European software engineering conference and the ACM SIGSOFT symposium on The foundations of software engineering, pp. 141–150. ACM, New York (2009)Google Scholar
  11. 11.
    Grinchtein, O., Jonsson, B., Pettersson, P.: Inference of event-recording automata using timed decision trees. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 435–449. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Hagerer, A., Margaria, T., Niese, O., Steffen, B., Brune, G., Ide, H.D.: Efficient regression testing of CTI-systems: Testing a complex call-center solution. Annual review of communication, Int. Engineering Consortium (IEC) 55, 1033–1040 (2001)Google Scholar
  13. 13.
    Huima, A.: Implementing conformiq qtronic. In: Petrenko, A., Veanes, M., Tretmans, J., Grieskamp, W. (eds.) TestCom/FATES 2007. LNCS, vol. 4581, pp. 1–12. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Inverardi, P., Issarny, V., Spalazzese, R.: A Theory of Mediators for Eternal Connectors. In: ISoLA 2010, Part II. LNCS, vol. 6416, pp. 236–250. Springer, Heidelberg (2010)Google Scholar
  15. 15.
    Issarny, V., Steffen, B., Jonsson, B., Blair, G.S., Grace, P., Kwiatkowska, M.Z., Calinescu, R., Inverardi, P., Tivoli, M., Bertolino, A., Sabetta, A.: CONNECT Challenges: Towards Emergent Connectors for Eternal Networked Systems. In: ICECCS, pp. 154–161 (2009)Google Scholar
  16. 16.
    Jung, G., Margaria, T., Wagner, C., Bakera, M.: Formalizing a Methodology for Design- and Runtime Self-Healing. In: IEEE International Workshop on Engineering of Autonomic and Autonomous Systems, pp. 106–115 (2010)Google Scholar
  17. 17.
    Lamprecht, A.-L., Naujokat, S., Margaria, T., Steffen, B.: Synthesis-Based Loose Programming. In: QUATIC 2010 - 7th International Conference on the Quality of Information and Communications Technology (accepted, 2010) (in submission)Google Scholar
  18. 18.
    Margaria, T., Niese, O., Raffelt, H., Steffen, B.: Efficient test-based model generation for legacy reactive systems. In: HLDVT 2004: Proceedings of the Ninth IEEE International Workshop on High-Level Design Validation and Test, pp. 95–100. IEEE Computer Society, Los Alamitos (2004)Google Scholar
  19. 19.
    Margaria, T., Raffelt, H., Steffen, B.: Knowledge-based relevance filtering for efficient system-level test-based model generation. Innovations in Systems and Software Engineering 1(2), 147–156 (2005)CrossRefGoogle Scholar
  20. 20.
    Raffelt, H., Steffen, B., Berg, T., Margaria, T.: LearnLib: a framework for extrapolating behavioral models. Int. J. Softw. Tools Technol. Transf. 11(5), 393–407 (2009)CrossRefGoogle Scholar
  21. 21.
    Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences. Inf. Comput. 103(2), 299–347 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Shahbaz, M., Groz, R.: Inferring Mealy Machines. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 207–222. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  23. 23.
    Shahbaz, M., Li, K., Groz, R.: Learning and integration of parameterized components through testing. In: Petrenko, A., Veanes, M., Tretmans, J., Grieskamp, W. (eds.) TestCom/FATES 2007. LNCS, vol. 4581, pp. 319–334. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  24. 24.
    Steffen, B., Howar, F., Merten, M., Margaria, T.: Practical Aspects of Active Learning. In: FMICS Handbook. Wiley, Chichester (to appear, 2010)Google Scholar
  25. 25.
    Steffen, B., Margaria, T., Freitag, B.: Module Configuration by Minimal Model Construction (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Falk Howar
    • 2
  • Bengt Jonsson
    • 1
  • Maik Merten
    • 2
  • Bernhard Steffen
    • 2
  • Sofia Cassel
    • 1
  1. 1.Department of Computer SystemsUppsala UniversitySweden
  2. 2.Chair for Programming SystemsTechnical University DortmundGermany

Personalised recommendations