Skip to main content

Multiple Roles of Alu-Related Noncoding RNAs

  • Chapter
  • First Online:
Long Non-Coding RNAs

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 51))

Abstract

Repetitive Alu and Alu-related elements are present in primates, tree shrews (Scandentia), and rodents and have expanded to 1.3 million copies in the human genome by nonautonomous retrotransposition. Pol III transcription from these elements occurs at low levels under normal conditions but increases transiently after stress, indicating a function of Alu RNAs in cellular stress response. Alu RNAs assemble with cellular proteins into ribonucleoprotein complexes and can be processed into the smaller scAlu RNAs. Alu and Alu-related RNAs play a role in regulating transcription and translation. They provide a source for the biogenesis of miRNAs and, embedded into mRNAs, can be targeted by miRNAs. When present as inverted repeats in mRNAs, they become substrates of the editing enzymes, and their modification causes the nuclear retention of these mRNAs. Certain Alu elements evolved into unique transcription units with specific expression profiles producing RNAs with highly specific cellular functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adeniyi-Jones S, Zasloff M (1985) Transcription, processing and nuclear transport of a B1 Alu RNA species complementary to an intron of the murine alpha-fetoprotein gene. Nature 317:81–84

    Article  PubMed  CAS  Google Scholar 

  • Aleman C, Roy-Engel AM, Shaikh TH, Deininger PL (2000) Cis-acting influences on Alu RNA levels. Nucleic Acids Res 28:4755–4761

    Article  PubMed  CAS  Google Scholar 

  • Allen TA, Von Kaenel S, Goodrich JA, Kugel JF (2004) The SINE-encoded mouse B2 RNA represses mRNA transcription in response to heat shock. Nat Struct Mol Biol 11:816–821

    Article  PubMed  CAS  Google Scholar 

  • Athanasiadis A, Rich A, Maas S (2004) Widespread A-to-I RNA editing of Alu-containing mRNAs in the human transcriptome. PLoS Biol 2:e391

    Article  PubMed  Google Scholar 

  • Bass BL (2002) RNA editing by adenosine deaminases that act on RNA. Annu Rev Biochem 71:817–846

    Article  PubMed  CAS  Google Scholar 

  • Batzer MA, Deininger PL (2002) Alu repeats and human genomic diversity. Nat Rev Genet 3:370–379

    Article  PubMed  CAS  Google Scholar 

  • Batzer MA, Deininger PL, Hellmann-Blumberg U, Jurka J, Labuda D, Rubin CM, Schmid CW, Zietkiewicz E, Zuckerkandl E (1996) Standardized nomenclature for Alu repeats. J Mol Evol 42:3–6

    Article  PubMed  CAS  Google Scholar 

  • Bennett EA, Keller H, Mills RE, Schmidt S, Moran JV, Weichenrieder O, Devine SE (2008) Active Alu retrotransposons in the human genome. Genome Res 18:1875–1883

    Article  PubMed  CAS  Google Scholar 

  • Bird AP (1980) DNA methylation and the frequency of CpG in animal DNA. Nucleic Acids Res 8:1499–1504

    Article  PubMed  CAS  Google Scholar 

  • Blow M, Futreal PA, Wooster R, Stratton MR (2004) A survey of RNA editing in human brain. Genome Res 14:2379–2387

    Article  PubMed  CAS  Google Scholar 

  • Borchert GM, Lanier W, Davidson BL (2006) RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 13:1097–1101

    Article  PubMed  CAS  Google Scholar 

  • Bortolin-Cavaille ML, Dance M, Weber M, Cavaille J (2009) C19MC microRNAs are processed from introns of large Pol-II, non-protein-coding transcripts. Nucleic Acids Res 37:3464–3473

    Article  PubMed  CAS  Google Scholar 

  • Bovia F, Fornallaz M, Leffers H, Strub K (1995) The SRP9/14 subunit of the signal recognition particle (SRP) is present in more than 20-fold excess over SRP in primate cells and exists primarily free but also in complex with small cytoplasmic Alu RNAs. Mol Biol Cell 6:471–484

    PubMed  CAS  Google Scholar 

  • Bovia F, Wolff N, Ryser S, Strub K (1997) The SRP9/14 subunit of the human signal recognition particle binds to a variety of Alu-like RNAs and with higher affinity than its mouse homolog. Nucleic Acids Res 25:318–326

    Article  PubMed  CAS  Google Scholar 

  • Bramham CR, Wells DG (2007) Dendritic mRNA: transport, translation and function. Nat Rev Neurosci 8:776–789

    Article  PubMed  CAS  Google Scholar 

  • Bredow S, Surig D, Muller J, Kleinert H, Benecke BJ (1990) Activating-transcription-factor (ATF) regulates human 7S L RNA transcription by RNA polymerase III in vivo and in vitro. Nucleic Acids Res 18:6779–6784

    Article  PubMed  CAS  Google Scholar 

  • Britten RJ (1994) Evidence that most human Alu sequences were inserted in a process that ceased about 30 million years ago. Proc Natl Acad Sci USA 91:6148–6150

    Article  PubMed  CAS  Google Scholar 

  • Britten RJ, Baron WF, Stout DB, Davidson EH (1988) Sources and evolution of human Alu repeated sequences. Proc Natl Acad Sci USA 85:4770–4774

    Article  PubMed  CAS  Google Scholar 

  • Callinan PA, Wang J, Herke SW, Garber RK, Liang P, Batzer MA (2005) Alu retrotransposition-mediated deletion. J Mol Biol 348:791–800

    Article  PubMed  CAS  Google Scholar 

  • Carey MF, Singh K, Botchan M, Cozzarelli NR (1986) Induction of specific transcription by RNA polymerase III in transformed cells. Mol Cell Biol 6:3068–3076

    PubMed  CAS  Google Scholar 

  • Castelnuovo M, Massone S, Tasso R, Fiorino G, Gatti M, Robello M, Gatta E, Berger A, Strub K, Florio T, et al (2010) An Alu-like RNA promotes cell differentiation and reduces malignancy of human neuroblastoma cells. FASEB J 24:4033–4046

    Google Scholar 

  • Chang DY, Maraia RJ (1993) A cellular protein binds B1 and Alu small cytoplasmic RNAs in vitro. J Biol Chem 268:6423–6428

    PubMed  CAS  Google Scholar 

  • Chang DY, Nelson B, Bilyeu T, Hsu K, Darlington GJ, Maraia RJ (1994) A human Alu RNA-binding protein whose expression is associated with accumulation of small cytoplasmic Alu RNA. Mol Cell Biol 14:3949–3959

    PubMed  CAS  Google Scholar 

  • Chang DY, Sasaki-Tozawa N, Green LK, Maraia RJ (1995) A trinucleotide repeat-associated increase in the level of Alu RNA-binding protein occurred during the same period as the major Alu amplification that accompanied anthropoid evolution. Mol Cell Biol 15:2109–2116

    PubMed  CAS  Google Scholar 

  • Chang DY, Hsu K, Maraia RJ (1996) Monomeric scAlu and nascent dimeric Alu RNAs induced by adenovirus are assembled into SRP9/14-containing RNPs in HeLa cells. Nucleic Acids Res 24:4165–4170

    Article  PubMed  CAS  Google Scholar 

  • Chen LL, Carmichael GG (2009) Altered nuclear retention of mRNAs containing inverted repeats in human embryonic stem cells: functional role of a nuclear noncoding RNA. Mol Cell 35:467–478

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Bocker W, Brosius J, Tiedge H (1997) Expression of neural BC200 RNA in human tumours. J Pathol 183:345–351

    Article  PubMed  CAS  Google Scholar 

  • Chen LL, DeCerbo JN, Carmichael GG (2008) Alu element-mediated gene silencing. EMBO J 27:1694–1705

    Article  PubMed  CAS  Google Scholar 

  • Cheng JG, Tiedge H, Brosius J (1997) Expression of dendritic BC200 RNA, component of a 11.4S ribonucleoprotein particle, is conserved in humans and simians. Neurosci Lett 224:206–210

    Article  PubMed  CAS  Google Scholar 

  • Chesnokov IN, Schmid CW (1995) Specific Alu binding protein from human sperm chromatin prevents DNA methylation. J Biol Chem 270:18539–18542

    Article  PubMed  CAS  Google Scholar 

  • Chesnokov I, Schmid CW (1996) Flanking sequences of an Alu source stimulate transcription in vitro by interacting with sequence-specific transcription factors. J Mol Evol 42:30–36

    Article  PubMed  CAS  Google Scholar 

  • Chesnokov I, Chu WM, Botchan MR, Schmid CW (1996) p53 inhibits RNA polymerase III-directed transcription in a promoter-dependent manner. Mol Cell Biol 16:7084–7088

    PubMed  CAS  Google Scholar 

  • Cho NY, Kim BH, Choi M, Yoo EJ, Moon KC, Cho YM, Kim D, Kang GH (2007) Hypermethylation of CpG island loci and hypomethylation of LINE-1 and Alu repeats in prostate adenocarcinoma and their relationship to clinicopathological features. J Pathol 211:269–277

    Article  PubMed  CAS  Google Scholar 

  • Choi IS, Estecio MR, Nagano Y, Kim do H, White JA, Yao JC, Issa JP, Rashid A (2007) Hypomethylation of LINE-1 and Alu in well-differentiated neuroendocrine tumors (pancreatic endocrine tumors and carcinoid tumors). Mod Pathol 20:802–810

    Article  PubMed  CAS  Google Scholar 

  • Chu WM, Liu WM, Schmid CW (1995) RNA polymerase III promoter and terminator elements affect Alu RNA expression. Nucleic Acids Res 23:1750–1757

    Article  PubMed  CAS  Google Scholar 

  • Chu WM, Wang Z, Roeder RG, Schmid CW (1997) RNA polymerase III transcription repressed by Rb through its interactions with TFIIIB and TFIIIC2. J Biol Chem 272:14755–14761

    Article  PubMed  CAS  Google Scholar 

  • Chu WM, Ballard R, Carpick BW, Williams BR, Schmid CW (1998) Potential Alu function: regulation of the activity of double-stranded RNA-activated kinase PKR. Mol Cell Biol 18:58–68

    PubMed  CAS  Google Scholar 

  • Cordaux R, Hedges DJ, Batzer MA (2004) Retrotransposition of Alu elements: how many sources? Trends Genet 20:464–467

    Article  PubMed  CAS  Google Scholar 

  • Cordaux R, Hedges DJ, Herke SW, Batzer MA (2006) Estimating the retrotransposition rate of human Alu elements. Gene 373:134–137

    Article  PubMed  CAS  Google Scholar 

  • Daniels GR, Deininger PL (1983) A second major class of Alu family repeated DNA sequences in a primate genome. Nucleic Acids Res 11:7595–7610

    Article  PubMed  CAS  Google Scholar 

  • Daniels GR, Deininger PL (1985) Repeat sequence families derived from mammalian tRNA genes. Nature 317:819–822

    Article  PubMed  CAS  Google Scholar 

  • Daskalos A, Nikolaidis G, Xinarianos G, Savvari P, Cassidy A, Zakopoulou R, Kotsinas A, Gorgoulis V, Field JK, Liloglou T (2009) Hypomethylation of retrotransposable elements correlates with genomic instability in non-small cell lung cancer. Int J Cancer 124:81–87

    Article  PubMed  CAS  Google Scholar 

  • Daskalova E, Baev V, Rusinov V, Minkov I (2006) 3′UTR-located ALU elements: donors of potential miRNA target sites and mediators of network miRNA-based regulatory interactions. Evol Bioinform Online 2:103–120

    Google Scholar 

  • DeChiara TM, Brosius J (1987) Neural BC1 RNA: cDNA clones reveal nonrepetitive sequence content. Proc Natl Acad Sci USA 84:2624–2628

    Article  PubMed  CAS  Google Scholar 

  • Deininger PL, Batzer MA (2002) Mammalian retroelements. Genome Res 12:1455–1465

    Article  PubMed  CAS  Google Scholar 

  • Deininger PL, Jolly DJ, Rubin CM, Friedmann T, Schmid CW (1981) Base sequence studies of 300 nucleotide renatured repeated human DNA clones. J Mol Biol 151:17–33

    Article  PubMed  CAS  Google Scholar 

  • Deininger PL, Batzer MA, Hutchison CA 3rd, Edgell MH (1992) Master genes in mammalian repetitive DNA amplification. Trends Genet 8:307–311

    PubMed  CAS  Google Scholar 

  • Dewannieux M, Esnault C, Heidmann T (2003) LINE-mediated retrotransposition of marked Alu sequences. Nat Genet 35:41–48

    Article  PubMed  CAS  Google Scholar 

  • Dombroski BA, Mathias SL, Nanthakumar E, Scott AF, Kazazian HH Jr (1991) Isolation of an active human transposable element. Science 254:1805–1808

    Article  PubMed  CAS  Google Scholar 

  • Duning K, Buck F, Barnekow A, Kremerskothen J (2008) SYNCRIP, a component of dendritically localized mRNPs, binds to the translation regulator BC200 RNA. J Neurochem 105:351–359

    Article  PubMed  CAS  Google Scholar 

  • Elder JT, Pan J, Duncan CH, Weissman SM (1981) Transcriptional analysis of interspersed repetitive polymerase III transcription units in human DNA. Nucleic Acids Res 9:1171–1189

    Article  PubMed  CAS  Google Scholar 

  • Espinoza CA, Allen TA, Hieb AR, Kugel JF, Goodrich JA (2004) B2 RNA binds directly to RNA polymerase II to repress transcript synthesis. Nat Struct Mol Biol 11:822–829

    Article  PubMed  CAS  Google Scholar 

  • Espinoza CA, Goodrich JA, Kugel JF (2007) Characterization of the structure, function, and mechanism of B2 RNA, an ncRNA repressor of RNA polymerase II transcription. RNA 13:583–596

    Article  PubMed  CAS  Google Scholar 

  • Feng Q, Moran JV, Kazazian HH Jr, Boeke JD (1996) Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87:905–916

    Article  PubMed  CAS  Google Scholar 

  • Fox AH, Lam YW, Leung AK, Lyon CE, Andersen J, Mann M, Lamond AI (2002) Paraspeckles: a novel nuclear domain. Curr Biol 12:13–25

    Article  PubMed  CAS  Google Scholar 

  • Fuhrman SA, Deininger PL, LaPorte P, Friedmann T, Geiduschek EP (1981) Analysis of transcription of the human Alu family ubiquitous repeating element by eukaryotic RNA polymerase III. Nucleic Acids Res 9:6439–6456

    Article  PubMed  CAS  Google Scholar 

  • Garcia MA, Meurs EF, Esteban M (2007) The dsRNA protein kinase PKR: virus and cell control. Biochimie 89:799–811

    Article  PubMed  CAS  Google Scholar 

  • Goodier JL, Maraia RJ (1998) Terminator-specific recycling of a B1-Alu transcription complex by RNA polymerase III is mediated by the RNA terminus-binding protein La. J Biol Chem 273:26110–26116

    Article  PubMed  CAS  Google Scholar 

  • Goodier JL, Mandal PK, Zhang L, Kazazian HH Jr (2010) Discrete subcellular partitioning of human retrotransposon RNAs despite a common mechanism of genome insertion. Hum Mol Genet 19:1712–1725

    Article  PubMed  CAS  Google Scholar 

  • Gu TJ, Yi X, Zhao XW, Zhao Y, Yin JQ (2009) Alu-directed transcriptional regulation of some novel miRNAs. BMC Genomics 10:563

    Article  PubMed  CAS  Google Scholar 

  • Hagan CR, Rudin CM (2007) DNA cleavage and Trp53 differentially affect SINE transcription. Genes Chromosom Cancer 46:248–260

    Article  PubMed  CAS  Google Scholar 

  • Hagan CR, Sheffield RF, Rudin CM (2003) Human Alu element retrotransposition induced by genotoxic stress. Nat Genet 35:219–220

    Article  PubMed  CAS  Google Scholar 

  • Harada F, Kato N (1980) Nucleotide sequences of 4.5S RNAs associated with poly(A)-containing RNAs of mouse and hamster cells. Nucleic Acids Res 8:1273–1285

    Article  PubMed  CAS  Google Scholar 

  • Harada F, Kato N, Hoshino H (1979) Series of 4.5S RNAs associated with poly(A)-containing RNAs of rodent cells. Nucleic Acids Res 7:909–917

    Article  PubMed  CAS  Google Scholar 

  • Hasler J, Strub K (2006) Alu RNP and Alu RNA regulate translation initiation in vitro. Nucleic Acids Res 34:2374–2385

    Article  PubMed  CAS  Google Scholar 

  • Haynes SR, Toomey TP, Leinwand L, Jelinek WR (1981) The Chinese hamster Alu-equivalent sequence: a conserved highly repetitious, interspersed deoxyribonucleic acid sequence in mammals has a structure suggestive of a transposable element. Mol Cell Biol 1:573–583

    PubMed  CAS  Google Scholar 

  • He XP, Bataille N, Fried HM (1994) Nuclear export of signal recognition particle RNA is a facilitated process that involves the Alu sequence domain. J Cell Sci 107:903–912

    PubMed  CAS  Google Scholar 

  • Hellmann-Blumberg U, Hintz MF, Gatewood JM, Schmid CW (1993) Developmental differences in methylation of human Alu repeats. Mol Cell Biol 13:4523–4530

    PubMed  CAS  Google Scholar 

  • Hess J, Perez-Stable C, Wu GJ, Weir B, Tinoco I Jr, Shen CK (1985) End-to-end transcription of an Alu family repeat. A new type of polymerase-III-dependent terminator and its evolutionary implication. J Mol Biol 184:7–21

    Article  PubMed  CAS  Google Scholar 

  • Hsu K, Chang DY, Maraia RJ (1995) Human signal recognition particle (SRP) Alu-associated protein also binds Alu interspersed repeat sequence RNAs. Characterization of human SRP9. J Biol Chem 270:10179–10186

    Article  PubMed  CAS  Google Scholar 

  • Hundley HA, Krauchuk AA, Bass BL (2008) C. elegans and H. sapiens mRNAs with edited 3′ UTRs are present on polysomes. RNA 14:2050–2060

    Article  PubMed  CAS  Google Scholar 

  • Iacoangeli A, Lin Y, Morley EJ, Muslimov IA, Bianchi R, Reilly J, Weedon J, Diallo R, Bocker W, Tiedge H (2004) BC200 RNA in invasive and preinvasive breast cancer. Carcinogenesis 25:2125–2133

    Article  PubMed  CAS  Google Scholar 

  • Jang KL, Latchman DS (1989) HSV infection induces increased transcription of Alu repeated sequences by RNA polymerase III. FEBS Lett 258:255–258

    Article  PubMed  CAS  Google Scholar 

  • Jang KL, Latchman DS (1992) The herpes simplex virus immediate-early protein ICP27 stimulates the transcription of cellular Alu repeated sequences by increasing the activity of transcription factor TFIIIC. Biochem J 284:667–673

    PubMed  CAS  Google Scholar 

  • Jang KL, Collins MK, Latchman DS (1992) The human immunodeficiency virus tat protein increases the transcription of human Alu repeated sequences by increasing the activity of the cellular transcription factor TFIIIC. J Acquir Immune Defic Syndr 5:1142–1147

    PubMed  CAS  Google Scholar 

  • Jelinek WR, Schmid CW (1982) Repetitive sequences in eukaryotic DNA and their expression. Annu Rev Biochem 51:813–844

    Article  PubMed  CAS  Google Scholar 

  • Johnson EM, Kinoshita Y, Weinreb DB, Wortman MJ, Simon R, Khalili K, Winckler B, Gordon J (2006) Role of Pur alpha in targeting mRNA to sites of translation in hippocampal neuronal dendrites. J Neurosci Res 83:929–943

    Article  PubMed  CAS  Google Scholar 

  • Jurka J (1997) Sequence patterns indicate an enzymatic involvement in integration of mammalian retroposons. Proc Natl Acad Sci USA 94:1872–1877

    Article  PubMed  CAS  Google Scholar 

  • Jurka J, Milosavljevic A (1991) Reconstruction and analysis of human Alu genes. J Mol Evol 32:105–121

    Article  PubMed  CAS  Google Scholar 

  • Jurka J, Smith T (1988) A fundamental division in the Alu family of repeated sequences. Proc Natl Acad Sci USA 85:4775–4778

    Article  PubMed  CAS  Google Scholar 

  • Kanai Y, Dohmae N, Hirokawa N (2004) Kinesin transports RNA: isolation and characterization of an RNA-transporting granule. Neuron 43:513–525

    Article  PubMed  CAS  Google Scholar 

  • Keren H, Lev-Maor G, Ast G (2010) Alternative splicing and evolution: diversification, exon definition and function. Nat Rev Genet 11:345–355

    Article  PubMed  CAS  Google Scholar 

  • Khanam T, Muddashetty RS, Kahvejian A, Sonenberg N, Brosius J (2006) Poly(A)-binding protein binds to A-rich sequences via RNA-binding domains 1+2 and 3+4. RNA Biol 3:170–177

    Article  PubMed  CAS  Google Scholar 

  • Khanam T, Rozhdestvensky TS, Bundman M, Galiveti CR, Handel S, Sukonina V, Jordan U, Brosius J, Skryabin BV (2007) Two primate-specific small non-protein-coding RNAs in transgenic mice: neuronal expression, subcellular localization and binding partners. Nucleic Acids Res 35:529–539

    Article  PubMed  CAS  Google Scholar 

  • Kiesel P, Gibson TJ, Ciesielczyk B, Bodemer M, Kaup FJ, Bodemer W, Zischler H, Zerr I (2010) Transcription of Alu DNA elements in blood cells of sporadic Creutzfeldt-Jakob disease (sCJD). Prion 4(2):87–93

    Article  PubMed  CAS  Google Scholar 

  • Kim C, Rubin CM, Schmid CW (2001) Genome-wide chromatin remodeling modulates the Alu heat shock response. Gene 276:127–133

    Article  PubMed  CAS  Google Scholar 

  • Kim DD, Kim TT, Walsh T, Kobayashi Y, Matise TC, Buyske S, Gabriel A (2004) Widespread RNA editing of embedded alu elements in the human transcriptome. Genome Res 14:1719–1725

    Article  PubMed  CAS  Google Scholar 

  • Kim M, Bellini M, Ceman S (2009) Fragile X mental retardation protein FMRP binds mRNAs in the nucleus. Mol Cell Biol 29:214–228

    Article  PubMed  CAS  Google Scholar 

  • Kochanek S, Renz D, Doerfler W (1993) DNA methylation in the Alu sequences of diploid and haploid primary human cells. EMBO J 12:1141–1151

    PubMed  CAS  Google Scholar 

  • Kochanek S, Renz D, Doerfler W (1995) Transcriptional silencing of human Alu sequences and inhibition of protein binding in the box B regulatory elements by 5′-CG-3′ methylation. FEBS Lett 360:115–120

    Article  PubMed  CAS  Google Scholar 

  • Kondrashov AV, Kiefmann M, Ebnet K, Khanam T, Muddashetty RS, Brosius J (2005) Inhibitory effect of naked neural BC1 RNA or BC200 RNA on eukaryotic in vitro translation systems is reversed by poly(A)-binding protein (PABP). J Mol Biol 353:88–103

    Article  PubMed  CAS  Google Scholar 

  • Kramerov DA, Tillib SV, Shumyatsky GP, Georgiev GP (1990) The most abundant nascent poly(A) + RNAs are transcribed by RNA polymerase III in murine tumor cells. Nucleic Acids Res 18:4499–4506

    Article  PubMed  CAS  Google Scholar 

  • Kremerskothen J, Zopf D, Walter P, Cheng JG, Nettermann M, Niewerth U, Maraia RJ, Brosius J (1998) Heterodimer SRP9/14 is an integral part of the neural BC200 RNP in primate brain. Neurosci Lett 245:123–126

    Article  PubMed  CAS  Google Scholar 

  • Kriegs JO, Churakov G, Jurka J, Brosius J, Schmitz J (2007) Evolutionary history of 7SL RNA-derived SINEs in Supraprimates. Trends Genet 23:158–161

    Article  PubMed  CAS  Google Scholar 

  • Kuryshev VY, Skryabin BV, Kremerskothen J, Jurka J, Brosius J (2001) Birth of a gene: locus of neuronal BC200 snmRNA in three prosimians and human BC200 pseudogenes as archives of change in the Anthropoidea lineage. J Mol Biol 309:1049–1066

    Article  PubMed  CAS  Google Scholar 

  • Labuda D, Striker G (1989) Sequence conservation in Alu evolution. Nucleic Acids Res 17:2477–2491

    Article  PubMed  CAS  Google Scholar 

  • Lakkaraju AK, Mary C, Scherrer A, Johnson AE, Strub K (2008) SRP keeps polypeptides translocation-competent by slowing translation to match limiting ER-targeting sites. Cell 133:440–451

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  PubMed  CAS  Google Scholar 

  • Lehnert S, Van Loo P, Thilakarathne PJ, Marynen P, Verbeke G, Schuit FC (2009) Evidence for co-evolution between human microRNAs and Alu-repeats. PLoS One 4:e4456

    Article  PubMed  CAS  Google Scholar 

  • Leinwand LA, Wydro RM, Nadal-Ginard B (1982) Small RNA molecules related to the Alu family of repetitive DNA sequences. Mol Cell Biol 2:1320–1330

    PubMed  CAS  Google Scholar 

  • Levanon EY, Eisenberg E, Yelin R, Nemzer S, Hallegger M, Shemesh R, Fligelman ZY, Shoshan A, Pollock SR, Sztybel D et al (2004) Systematic identification of abundant A-to-I editing sites in the human transcriptome. Nat Biotechnol 22:1001–1005

    Article  PubMed  CAS  Google Scholar 

  • Lev-Maor G, Sorek R, Levanon EY, Paz N, Eisenberg E, Ast G (2007) RNA-editing-mediated exon evolution. Genome Biol 8:R29

    Article  PubMed  CAS  Google Scholar 

  • Li TH, Schmid CW (2001) Differential stress induction of individual Alu loci: implications for transcription and retrotransposition. Gene 276:135–141

    Article  PubMed  CAS  Google Scholar 

  • Li TH, Schmid CW (2004) Alu’s dimeric consensus sequence destabilizes its transcripts. Gene 324:191–200

    Article  PubMed  CAS  Google Scholar 

  • Li T, Spearow J, Rubin CM, Schmid CW (1999) Physiological stresses increase mouse short interspersed element (SINE) RNA expression in vivo. Gene 239:367–372

    Article  PubMed  CAS  Google Scholar 

  • Li TH, Kim C, Rubin CM, Schmid CW (2000) K562 cells implicate increased chromatin accessibility in Alu transcriptional activation. Nucleic Acids Res 28:3031–3039

    Article  PubMed  CAS  Google Scholar 

  • Lin D, Pestova TV, Hellen CU, Tiedge H (2008) Translational control by a small RNA: dendritic BC1 RNA targets the eukaryotic initiation factor 4A helicase mechanism. Mol Cell Biol 28:3008–3019

    Article  PubMed  CAS  Google Scholar 

  • Liu WM, Schmid CW (1993) Proposed roles for DNA methylation in Alu transcriptional repression and mutational inactivation. Nucleic Acids Res 21:1351–1359

    Article  PubMed  CAS  Google Scholar 

  • Liu WM, Maraia RJ, Rubin CM, Schmid CW (1994) Alu transcripts: cytoplasmic localisation and regulation by DNA methylation. Nucleic Acids Res 22:1087–1095

    Article  PubMed  CAS  Google Scholar 

  • Liu WM, Chu WM, Choudary PV, Schmid CW (1995) Cell stress and translational inhibitors transiently increase the abundance of mammalian SINE transcripts. Nucleic Acids Res 23:1758–1765

    Article  PubMed  CAS  Google Scholar 

  • Lowenstein CJ, Padalko E (2004) iNOS (NOS2) at a glance. J Cell Sci 117:2865–2867

    Article  PubMed  CAS  Google Scholar 

  • Luan DD, Korman MH, Jakubczak JL, Eickbush TH (1993) Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72:595–605

    Article  PubMed  CAS  Google Scholar 

  • Maraia RJ (1991) The subset of mouse B1 (Alu-equivalent) sequences expressed as small processed cytoplasmic transcripts. Nucleic Acids Res 19:5695–5702

    Article  PubMed  CAS  Google Scholar 

  • Maraia RJ (1996) Transcription termination factor La is also an initiation factor for RNA polymerase III. Proc Natl Acad Sci USA 93:3383–3387

    Article  PubMed  CAS  Google Scholar 

  • Maraia R, Zasloff M, Plotz P, Adeniyi-Jones S (1988) Pathway of B1-Alu expression in microinjected oocytes: Xenopus laevis proteins associated with nuclear precursor and processed cytoplasmic RNAs. Mol Cell Biol 8:4433–4440

    PubMed  CAS  Google Scholar 

  • Maraia RJ, Chang DY, Wolffe AP, Vorce RL, Hsu K (1992) The RNA polymerase III terminator used by a B1-Alu element can modulate 3′ processing of the intermediate RNA product. Mol Cell Biol 12:1500–1506

    PubMed  CAS  Google Scholar 

  • Maraia RJ, Driscoll CT, Bilyeu T, Hsu K, Darlington GJ (1993) Multiple dispersed loci produce small cytoplasmic Alu RNA. Mol Cell Biol 13:4233–4241

    PubMed  CAS  Google Scholar 

  • Maraia RJ, Kenan DJ, Keene JD (1994) Eukaryotic transcription termination factor La mediates transcript release and facilitates reinitiation by RNA polymerase III. Mol Cell Biol 14:2147–2158

    PubMed  CAS  Google Scholar 

  • Mariner PD, Walters RD, Espinoza CA, Drullinger LF, Wagner SD, Kugel JF, Goodrich JA (2008) Human Alu RNA is a modular transacting repressor of mRNA transcription during heat shock. Mol Cell 29:499–509

    Article  PubMed  CAS  Google Scholar 

  • Martignetti JA, Brosius J (1993) BC200 RNA: a neural RNA polymerase III product encoded by a monomeric Alu element. Proc Natl Acad Sci USA 90:11563–11567

    Article  PubMed  CAS  Google Scholar 

  • Matera AG, Hellmann U, Schmid CW (1990) A transpositionally and transcriptionally competent Alu subfamily. Mol Cell Biol 10:5424–5432

    PubMed  CAS  Google Scholar 

  • Mathias SL, Scott AF, Kazazian HH Jr, Boeke JD, Gabriel A (1991) Reverse transcriptase encoded by a human transposable element. Science 254:1808–1810

    Article  PubMed  CAS  Google Scholar 

  • Morse DP, Aruscavage PJ, Bass BL (2002) RNA hairpins in noncoding regions of human brain and Caenorhabditis elegans mRNA are edited by adenosine deaminases that act on RNA. Proc Natl Acad Sci USA 99:7906–7911

    Article  PubMed  CAS  Google Scholar 

  • Muddashetty R, Khanam T, Kondrashov A, Bundman M, Iacoangeli A, Kremerskothen J, Duning K, Barnekow A, Huttenhofer A, Tiedge H et al (2002) Poly(A)-binding protein is associated with neuronal BC1 and BC200 ribonucleoprotein particles. J Mol Biol 321:433–445

    Article  PubMed  CAS  Google Scholar 

  • Mullin C, Duning K, Barnekow A, Richter D, Kremerskothen J, Mohr E (2004) Interaction of rat poly(A)-binding protein with poly(A)- and non-poly(A) sequences is preferentially mediated by RNA recognition motifs 3+4. FEBS Lett 576:437–441

    Article  PubMed  CAS  Google Scholar 

  • Mus E, Hof PR, Tiedge H (2007) Dendritic BC200 RNA in aging and in Alzheimer’s disease. Proc Natl Acad Sci USA 104:10679–10684

    Article  PubMed  CAS  Google Scholar 

  • Nishihara H, Terai Y, Okada N (2002) Characterization of novel Alu- and tRNA-related SINEs from the tree shrew and evolutionary implications of their origins. Mol Biol Evol 19:1964–1972

    Article  PubMed  CAS  Google Scholar 

  • Ohashi S, Kobayashi S, Omori A, Ohara S, Omae A, Muramatsu T, Li Y, Anzai K (2000) The single-stranded DNA- and RNA-binding proteins pur alpha and pur beta link BC1 RNA to microtubules through binding to the dendrite-targeting RNA motifs. J Neurochem 75:1781–1790

    Article  PubMed  CAS  Google Scholar 

  • Osenberg S, Dominissini D, Rechavi G, Eisenberg E (2009) Widespread cleavage of A-to-I hyperediting substrates. RNA 15:1632–1639

    Article  PubMed  CAS  Google Scholar 

  • Pagano A, Castelnuovo M, Tortelli F, Ferrari R, Dieci G, Cancedda R (2007) New small nuclear RNA gene-like transcriptional units as sources of regulatory transcripts. PLoS Genet 3:e1

    Article  PubMed  CAS  Google Scholar 

  • Panning B, Smiley JR (1993) Activation of RNA polymerase III transcription of human Alu repetitive elements by adenovirus type 5: requirement for the E1b 58-kilodalton protein and the products of E4 open reading frames 3 and 6. Mol Cell Biol 13:3231–3244

    PubMed  CAS  Google Scholar 

  • Panning B, Smiley JR (1994) Activation of RNA polymerase III transcription of human Alu elements by herpes simplex virus. Virology 202:408–417

    Article  PubMed  CAS  Google Scholar 

  • Paolella G, Lucero MA, Murphy MH, Baralle FE (1983) The Alu family repeat promoter has a tRNA-like bipartite structure. EMBO J 2:691–696

    PubMed  CAS  Google Scholar 

  • Paul MS, Bass BL (1998) Inosine exists in mRNA at tissue-specific levels and is most abundant in brain mRNA. EMBO J 17:1120–1127

    Article  PubMed  CAS  Google Scholar 

  • Paulson KE, Schmid CW (1986) Transcriptional inactivity of Alu repeats in HeLa cells. Nucleic Acids Res 14:6145–6158

    Article  PubMed  CAS  Google Scholar 

  • Paz N, Levanon EY, Amariglio N, Heimberger AB, Ram Z, Constantini S, Barbash ZS, Adamsky K, Safran M, Hirschberg A et al (2007) Altered adenosine-to-inosine RNA editing in human cancer. Genome Res 17:1586–1595

    Article  PubMed  CAS  Google Scholar 

  • Perez-Stable C, Shen CK (1986) Competitive and cooperative functioning of the anterior and posterior promoter elements of an Alu family repeat. Mol Cell Biol 6:2041–2052

    PubMed  CAS  Google Scholar 

  • Perez-Stable C, Ayres TM, Shen CK (1984) Distinctive sequence organization and functional programming of an Alu repeat promoter. Proc Natl Acad Sci USA 81:5291–5295

    Article  PubMed  CAS  Google Scholar 

  • Perlino E, Paonessa G, Ciliberto G (1985) Alu sequences transcription in X. laevis oocytes: nuclear-cytoplasmic partitioning and evidence for 3′ end processing reactions. Nucleic Acids Res 13:8359–8377

    Article  PubMed  CAS  Google Scholar 

  • Prasanth KV, Prasanth SG, Xuan Z, Hearn S, Freier SM, Bennett CF, Zhang MQ, Spector DL (2005) Regulating gene expression through RNA nuclear retention. Cell 123:249–263

    Article  PubMed  CAS  Google Scholar 

  • Price AL, Eskin E, Pevzner PA (2004) Whole-genome analysis of Alu repeat elements reveals complex evolutionary history. Genome Res 14:2245–2252

    Article  PubMed  CAS  Google Scholar 

  • Quentin Y (1989) Successive waves of fixation of B1 variants in rodent lineage history. J Mol Evol 28:299–305

    Article  PubMed  CAS  Google Scholar 

  • Quentin Y (1992) Fusion of a free left Alu monomer and a free right Alu monomer at the origin of the Alu family in the primate genomes. Nucleic Acids Res 20:487–493

    Article  PubMed  CAS  Google Scholar 

  • Quentin Y (1994) A master sequence related to a free left Alu monomer (FLAM) at the origin of the B1 family in rodent genomes. Nucleic Acids Res 22:2222–2227

    Article  PubMed  CAS  Google Scholar 

  • Rabinovici R, Kabir K, Chen M, Su Y, Zhang D, Luo X, Yang JH (2001) ADAR1 is involved in the development of microvascular lung injury. Circ Res 88:1066–1071

    Article  PubMed  CAS  Google Scholar 

  • Rogers JH (1985) The origin and evolution of retroposons. Int Rev Cytol 93:187–279

    Article  PubMed  CAS  Google Scholar 

  • Roy AM, West NC, Rao A, Adhikari P, Aleman C, Barnes AP, Deininger PL (2000) Upstream flanking sequences and transcription of SINEs. J Mol Biol 302:17–25

    Article  PubMed  CAS  Google Scholar 

  • Rubin CM, VandeVoort CA, Teplitz RL, Schmid CW (1994) Alu repeated DNAs are differentially methylated in primate germ cells. Nucleic Acids Res 22:5121–5127

    Article  PubMed  CAS  Google Scholar 

  • Rubin CM, Kimura RH, Schmid CW (2002) Selective stimulation of translational expression by Alu RNA. Nucleic Acids Res 30:3253–3261

    Article  PubMed  CAS  Google Scholar 

  • Rudin CM, Thompson CB (2001) Transcriptional activation of short interspersed elements by DNA-damaging agents. Genes Chromosom Cancer 30:64–71

    Article  PubMed  CAS  Google Scholar 

  • Rueter SM, Dawson TR, Emeson RB (1999) Regulation of alternative splicing by RNA editing. Nature 399:75–80

    Article  PubMed  CAS  Google Scholar 

  • Russanova VR, Driscoll CT, Howard BH (1995) Adenovirus type 2 preferentially stimulates polymerase III transcription of Alu elements by relieving repression: a potential role for chromatin. Mol Cell Biol 15:4282–4290

    PubMed  CAS  Google Scholar 

  • Sarrowa J, Chang DY, Maraia RJ (1997) The decline in human Alu retroposition was accompanied by an asymmetric decrease in SRP9/14 binding to dimeric Alu RNA and increased expression of small cytoplasmic Alu RNA. Mol Cell Biol 17:1144–1151

    PubMed  CAS  Google Scholar 

  • Scadden AD, Smith CW (2001) RNAi is antagonized by A–>I hyper-editing. EMBO Rep 2:1107–1111

    Article  PubMed  CAS  Google Scholar 

  • Schmid CW (1991) Human Alu subfamilies and their methylation revealed by blot hybridization. Nucleic Acids Res 19:5613–5617

    Article  PubMed  CAS  Google Scholar 

  • Scott AF, Schmeckpeper BJ, Abdelrazik M, Comey CT, O’Hara B, Rossiter JP, Cooley T, Heath P, Smith KD, Margolet L (1987) Origin of the human L1 elements: proposed progenitor genes deduced from a consensus DNA sequence. Genomics 1:113–125

    Article  PubMed  CAS  Google Scholar 

  • Serra MJ, Smolter PE, Westhof E (2004) Pronounced instability of tandem IU base pairs in RNA. Nucleic Acids Res 32:1824–1828

    Article  PubMed  CAS  Google Scholar 

  • Shaikh TH, Roy AM, Kim J, Batzer MA, Deininger PL (1997) cDNAs derived from primary and small cytoplasmic Alu (scAlu) transcripts. J Mol Biol 271:222–234

    Article  PubMed  CAS  Google Scholar 

  • Shen MR, Batzer MA, Deininger PL (1991) Evolution of the master Alu gene(s). J Mol Evol 33:311–320

    Article  PubMed  CAS  Google Scholar 

  • Siegel V, Walter P (1988) Each of the activities of signal recognition particle (SRP) is contained within a distinct domain: analysis of biochemical mutants of SRP. Cell 52:39–49

    Article  PubMed  CAS  Google Scholar 

  • Sinnett D, Richer C, Deragon JM, Labuda D (1992) Alu RNA transcripts in human embryonal carcinoma cells. Model of post-transcriptional selection of master sequences. J Mol Biol 226:689–706

    Article  PubMed  CAS  Google Scholar 

  • Skryabin BV, Kremerskothen J, Vassilacopoulou D, Disotell TR, Kapitonov VV, Jurka J, Brosius J (1998) The BC200 RNA gene and its neural expression are conserved in Anthropoidea (Primates). J Mol Evol 47:677–685

    Article  PubMed  CAS  Google Scholar 

  • Skryabin BV, Sukonina V, Jordan U, Lewejohann L, Sachser N, Muslimov I, Tiedge H, Brosius J (2003) Neuronal untranslated BC1 RNA: targeted gene elimination in mice. Mol Cell Biol 23:6435–6441

    Article  PubMed  CAS  Google Scholar 

  • Smalheiser NR, Torvik VI (2006) Alu elements within human mRNAs are probable microRNA targets. Trends Genet 22:532–536

    Article  PubMed  CAS  Google Scholar 

  • Srikanta D, Sen SK, Conlin EM, Batzer MA (2009a) Internal priming: an opportunistic pathway for L1 and Alu retrotransposition in hominins. Gene 448:233–241

    Article  PubMed  CAS  Google Scholar 

  • Srikanta D, Sen SK, Huang CT, Conlin EM, Rhodes RM, Batzer MA (2009b) An alternative pathway for Alu retrotransposition suggests a role in DNA double-strand break repair. Genomics 93:205–212

    Article  PubMed  CAS  Google Scholar 

  • Styles P, Brookfield JF (2009) Source gene composition and gene conversion of the AluYh and AluYi lineages of retrotransposons. BMC Evol Biol 9:102

    Article  PubMed  CAS  Google Scholar 

  • Tang RB, Wang HY, Lu HY, Xiong J, Li HH, Qiu XH, Liu HQ (2005) Increased level of polymerase III transcribed Alu RNA in hepatocellular carcinoma tissue. Mol Carcinog 42:93–96

    Article  PubMed  CAS  Google Scholar 

  • Tiedge H, Fremeau RT Jr, Weinstock PH, Arancio O, Brosius J (1991) Dendritic location of neural BC1 RNA. Proc Natl Acad Sci USA 88:2093–2097

    Article  PubMed  CAS  Google Scholar 

  • Tiedge H, Chen W, Brosius J (1993) Primary structure, neural-specific expression, and dendritic location of human BC200 RNA. J Neurosci 13:2382–2390

    PubMed  CAS  Google Scholar 

  • Tonkin LA, Bass BL (2003) Mutations in RNAi rescue aberrant chemotaxis of ADAR mutants. Science 302:1725

    Article  PubMed  CAS  Google Scholar 

  • Ullu E, Tschudi C (1984) Alu sequences are processed 7SL RNA genes. Nature 312:171–172

    Article  PubMed  CAS  Google Scholar 

  • Ullu E, Weiner AM (1985) Upstream sequences modulate the internal promoter of the human 7SL RNA gene. Nature 318:371–374

    Article  PubMed  CAS  Google Scholar 

  • Vassetzky NS, Ten OA, Kramerov DA (2003) B1 and related SINEs in mammalian genomes. Gene 319:149–160

    Article  PubMed  CAS  Google Scholar 

  • Veniaminova NA, Vassetzky NS, Kramerov DA (2007) B1 SINEs in different rodent families. Genomics 89:678–686

    Article  PubMed  CAS  Google Scholar 

  • Wagner SD, Kugel JF, Goodrich JA (2010) TFIIF facilitates dissociation of RNA polymerase II from noncoding RNAs that lack a repression domain. Mol Cell Biol 30:91–97

    Article  PubMed  CAS  Google Scholar 

  • Wallace N, Wagstaff BJ, Deininger PL, Roy-Engel AM (2008) LINE-1 ORF1 protein enhances Alu SINE retrotransposition. Gene 419:1–6

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Iacoangeli A, Popp S, Muslimov IA, Imataka H, Sonenberg N, Lomakin IB, Tiedge H (2002) Dendritic BC1 RNA: functional role in regulation of translation initiation. J Neurosci 22:10232–10241

    PubMed  CAS  Google Scholar 

  • Wang H, Iacoangeli A, Lin D, Williams K, Denman RB, Hellen CU, Tiedge H (2005) Dendritic BC1 RNA in translational control mechanisms. J Cell Biol 171:811–821

    Article  PubMed  CAS  Google Scholar 

  • Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562

    Article  PubMed  CAS  Google Scholar 

  • Watson JB, Sutcliffe JG (1987) Primate brain-specific cytoplasmic transcript of the Alu repeat family. Mol Cell Biol 7:3324–3327

    PubMed  CAS  Google Scholar 

  • Weichenrieder O, Wild K, Strub K, Cusack S (2000) Structure and assembly of the Alu domain of the mammalian signal recognition particle. Nature 408:167–173

    Article  PubMed  CAS  Google Scholar 

  • Williams BR (1999) PKR; a sentinel kinase for cellular stress. Oncogene 18:6112–6120

    Article  PubMed  CAS  Google Scholar 

  • Xiang S, Liu Z, Zhang B, Zhou J, Zhu BD, Ji J, Deng D (2010) Methylation status of individual CpG sites within Alu elements in the human genome and Alu hypomethylation in gastric carcinomas. BMC Cancer 10:44

    Article  PubMed  CAS  Google Scholar 

  • Yakovchuk P, Goodrich JA, Kugel JF (2009) B2 RNA and Alu RNA repress transcription by disrupting contacts between RNA polymerase II and promoter DNA within assembled complexes. Proc Natl Acad Sci USA 106:5569–5574

    Article  PubMed  CAS  Google Scholar 

  • Yang JH, Luo X, Nie Y, Su Y, Zhao Q, Kabir K, Zhang D, Rabinovici R (2003) Widespread inosine-containing mRNA in lymphocytes regulated by ADAR1 in response to inflammation. Immunology 109:15–23

    Article  PubMed  CAS  Google Scholar 

  • Zalfa F, Giorgi M, Primerano B, Moro A, Di Penta A, Reis S, Oostra B, Bagni C (2003) The fragile X syndrome protein FMRP associates with BC1 RNA and regulates the translation of specific mRNAs at synapses. Cell 112:317–327

    Article  PubMed  CAS  Google Scholar 

  • Zalfa F, Adinolfi S, Napoli I, Kuhn-Holsken E, Urlaub H, Achsel T, Pastore A, Bagni C (2005) Fragile X mental retardation protein (FMRP) binds specifically to the brain cytoplasmic RNAs BC1/BC200 via a novel RNA-binding motif. J Biol Chem 280:33403–33410

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Carmichael GG (2001) The fate of dsRNA in the nucleus: a p54(nrb)-containing complex mediates the nuclear retention of promiscuously A-to-I edited RNAs. Cell 106:465–475

    Article  PubMed  CAS  Google Scholar 

  • Zhang R, Wang YQ, Su B (2008) Molecular evolution of a primate-specific microRNA family. Mol Biol Evol 25:1493–1502

    Article  PubMed  CAS  Google Scholar 

  • Zhong J, Chuang SC, Bianchi R, Zhao W, Lee H, Fenton AA, Wong RK, Tiedge H (2009) BC1 regulation of metabotropic glutamate receptor-mediated neuronal excitability. J Neurosci 29:9977–9986

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. F. Stutz for her comments on the manuscript. This work was supported by grants from the Swiss National Science Foundation and the Canton of Geneva. A.B. was a recipient of a fellowship from the Roche Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharina Strub .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Berger, A., Strub, K. (2011). Multiple Roles of Alu-Related Noncoding RNAs. In: Ugarkovic, D. (eds) Long Non-Coding RNAs. Progress in Molecular and Subcellular Biology(), vol 51. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16502-3_6

Download citation

Publish with us

Policies and ethics