Skip to main content

Animal Models in Overactive Bladder Research

  • Chapter
  • First Online:
Book cover Urinary Tract

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 2011))

Abstract

Overactive bladder syndrome (OAB) is a symptom-based diagnosis characterised by the presence of urinary urgency. It is highly prevalent and overlaps with the presence of bladder contractions during urine storage, which characterises the urodynamic diagnosis of detrusor overactivity. Animal models are needed to understand the pathophysiology of OAB, but the subjective nature of the symptomcomplex means that interpretation of the findings in animals requires caution. Because urinary urgency cannot be ascertained in animals, surrogate markers such as frequency, altered toileting areas, and non-micturition contractions have to be used instead. No model can recapitulate the subjective, objective, and related factors seen in the clinical setting. Models used include partial bladder outlet obstruction, the spontaneous hypertensive rat, the hyperlipidaemic rat, various neurological insults and some gene knock-outs. Strengths and weaknesses of these models are discussed in the context of the inherent difficulties of extrapolating subjective symptoms in animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATP:

Adenosine triphosphate

BOO:

Bladder outlet obstruction

BPE:

Benign prostatic enlargement

COX:

Cyclooxygenase enzyme

DO:

Detrusor overactivity

DSD:

Detrusor sphincter dyssynergia

EAE:

Experimental autoimmune encephalomyelitis

EP:

Family of G-protein coupled receptors

ER:

Oestrogen receptor

ICS:

International Continence Society

MCA:

Middle cerebral artery

MPTP:

Neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

MS:

Multiple sclerosis

NANC:

Non-cholinergic non-adrenergic

NMDA:

N-methyl-D-aspartate

nNOS:

Neuronal nitric oxide synthase

OAB:

Overactive bladder syndrome

P2X:

Purinergic receptor

PD:

Parkinson’s disease

PGE2 :

Prostaglandin E2

SHR:

Spontaneous hypertensive rat

VR-1:

Vanilloid receptor type 1

References

  • Aboushwareb T et al (2009) Alterations in bladder function associated with urothelial defects in uroplakin II and IIIa knockout mice. Neurourol Urodyn 28(8):1028–1033

    Article  CAS  PubMed  Google Scholar 

  • Abrams P, Drake M (2007) Overactive bladder. In: Wein AJ et al (eds) Campbell-Walsh urology. Saunders, Philadephia, pp 2079–2090

    Google Scholar 

  • Abrams P et al (2000) Overactive bladder significantly affects quality of life. Am J Manag Care 6(11 suppl):S580–S590

    CAS  PubMed  Google Scholar 

  • Abrams P et al (2002a) The standardisation of terminology of lower urinary tract function: report from the Standardisation Sub-committee of the International Continence Society. Neurourol Urodyn 21(2):167–178

    Article  PubMed  Google Scholar 

  • Abrams P et al (2002b) The standardisation of terminology of lower urinary tract function: report from the Standardisation Sub-committee of the International Continence Society. Am J Obstet Gynecol 187(1):116–126

    Article  PubMed  Google Scholar 

  • Andersson KE (2002) Bladder activation: afferent mechanisms. Urology 59(5 Suppl 1):43–50

    Article  PubMed  Google Scholar 

  • Andersson KE, Pehrson R (2003) CNS involvement in overactive bladder: pathophysiology and opportunities for pharmacological intervention. Drugs 63(23):2595–2611

    Article  CAS  PubMed  Google Scholar 

  • Andersson KE et al (2007) Phosphodiesterases (PDEs) and PDE inhibitors for treatment of LUTS. Neurourol Urodyn 26(6 Suppl):928–933

    Article  CAS  PubMed  Google Scholar 

  • Azadzoi KM et al (1999) Overactivity and structural changes in the chronically ischemic bladder. J Urol 162(5):1768–1778

    Article  CAS  PubMed  Google Scholar 

  • Belayev L et al (1996) Middle cerebral artery occlusion in the rat by intraluminal suture. Neurological and pathological evaluation of an improved model. Stroke 27(9):1616–1622; discussion 1623

    Google Scholar 

  • Birder LA (2005) More than just a barrier: urothelium as a drug target for urinary bladder pain. Am J Physiol Renal Physiol 289(3):F489–F495

    Article  CAS  PubMed  Google Scholar 

  • Birder LA, de Groat WC (2007) Mechanisms of disease: involvement of the urothelium in bladder dysfunction. Nat Clin Pract Urol 4(1):46–54

    Article  CAS  PubMed  Google Scholar 

  • Blaivas JG (1996) The bladder is an unreliable witness. Neurourol Urodyn 15(5):443–445

    Article  CAS  PubMed  Google Scholar 

  • Boyle P et al (2003) The association between lower urinary tract symptoms and erectile dysfunction in four centres: the UrEpik study. BJU Int 92(7):719–725

    Article  CAS  PubMed  Google Scholar 

  • Brading AF (1997) A myogenic basis for the overactive bladder. Urology 50(6A Suppl):57–67; discussion 68–73

    Google Scholar 

  • Brading AF (2006) Spontaneous activity of lower urinary tract smooth muscles: correlation between ion channels and tissue function. J Physiol 570(Pt 1):13–22

    CAS  PubMed  Google Scholar 

  • Brading AF, Turner WH (1994) The unstable bladder: towards a common mechanism. Br J Urol 73(1):3–8

    Article  CAS  PubMed  Google Scholar 

  • Bramble FJ (1982) The treatment of adult enuresis and urge incontinence by enterocystoplasty. Br J Urol 54(6):693–696

    Article  CAS  PubMed  Google Scholar 

  • Bramble FJ (1990) The clam cystoplasty. Br J Urol 66(4):337–341

    Article  CAS  PubMed  Google Scholar 

  • Brown JS et al (2000) Urinary incontinence: does it increase risk for falls and fractures? Study of Osteoporotic Fractures Research Group. J Am Geriatr Soc 48(7):721–725

    CAS  PubMed  Google Scholar 

  • Buckner SA et al (2002) Spontaneous phasic activity of the pig urinary bladder smooth muscle: characteristics and sensitivity to potassium channel modulators. Br J Pharmacol 135(3):639–648

    Article  CAS  PubMed  Google Scholar 

  • Bulmer P, Yang Q, Abrams P (2001) Does cigarette smoking cause detrusor instability in women? J Obstet Gynaecol 21(5):528–529

    Article  CAS  PubMed  Google Scholar 

  • Burnett AL et al (1997) Urinary bladder-urethral sphincter dysfunction in mice with targeted disruption of neuronal nitric oxide synthase models idiopathic voiding disorders in humans. Nat Med 3(5):571–574

    Article  CAS  PubMed  Google Scholar 

  • Burns RS et al (1983) A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine. Proc Natl Acad Sci USA 80(14):4546–4550

    Article  CAS  PubMed  Google Scholar 

  • Caterina MJ et al (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389(6653):816–824

    Article  CAS  PubMed  Google Scholar 

  • Chan AW (2004) Transgenic nonhuman primates for neurodegenerative diseases. Reprod Biol Endocrinol 2:39

    Article  PubMed  Google Scholar 

  • Cockayne DA et al (2000) Urinary bladder hyporeflexia and reduced pain-related behaviour in P2X3-deficient mice. Nature 407(6807):1011–1015

    Article  CAS  PubMed  Google Scholar 

  • Coolsaet BL et al (1993) New concepts in relation to urge and detrusor activity. Neurourol Urodyn 12(5):463–471

    Article  CAS  PubMed  Google Scholar 

  • Craggs MD, Rushton DN, Stephenson JD (1986) A putative non-cholinergic mechanism in urinary bladders of New but not Old World primates. J Urol 136(6):1348–1350

    CAS  PubMed  Google Scholar 

  • de Groat WC (1997) A neurologic basis for the overactive bladder. Urology 50(6A Suppl):36–52; discussion 53–56

    Google Scholar 

  • de Groat WC, Yoshimura N (2001) Pharmacology of the lower urinary tract. Annu Rev Pharmacol Toxicol 41:691–721

    Article  PubMed  Google Scholar 

  • Drake MJ, Mills IW, Gillespie JI (2001) Model of peripheral autonomous modules and a myovesical plexus in normal and overactive bladder function. Lancet 358(9279):401–403

    Article  CAS  PubMed  Google Scholar 

  • Drake MJ, Harvey IJ, Gillespie JI (2003a) Autonomous activity in the isolated guinea pig bladder. Exp Physiol 88(1):19–30

    Article  CAS  PubMed  Google Scholar 

  • Drake MJ et al (2003b) Partial outlet obstruction enhances modular autonomous activity in the isolated rat bladder. J Urol 170(1):276–279

    Article  PubMed  Google Scholar 

  • Drake MJ et al (2005) Localized contractions in the normal human bladder and in urinary urgency. BJU Int 95(7):1002–1005

    Article  PubMed  Google Scholar 

  • Drake M et al (2006) Muscarinic stimulation of the rat isolated whole bladder: pathophysiological models of detrusor overactivity. Auton Autacoid Pharmacol 26(3):261–266

    Article  CAS  PubMed  Google Scholar 

  • Ferguson DR, Kennedy I, Burton TJ (1997) ATP is released from rabbit urinary bladder epithelial cells by hydrostatic pressure changes–a possible sensory mechanism? J Physiol 505(Pt 2):503–511

    Article  CAS  PubMed  Google Scholar 

  • Fowler CJ (2002) Bladder afferents and their role in the overactive bladder. Urology 59(5 suppl 1):37–42

    Article  PubMed  Google Scholar 

  • Gabella G, Uvelius B (1990) Urinary bladder of rat: fine structure of normal and hypertrophic musculature. Cell Tissue Res 262(1):67–79

    Article  CAS  PubMed  Google Scholar 

  • Gerfen CR (2000) Molecular effects of dopamine on striatal-projection pathways. Trends Neurosci 23(10 Suppl):S64–S70

    Article  CAS  PubMed  Google Scholar 

  • Gevaert T et al (2007) Deletion of the transient receptor potential cation channel TRPV4 impairs murine bladder voiding. J Clin Invest 117(11):3453–3462

    Article  CAS  PubMed  Google Scholar 

  • Gibbs RA et al (2007) Evolutionary and biomedical insights from the rhesus macaque genome. Science 316(5822):222–234

    Article  CAS  PubMed  Google Scholar 

  • Gillespie JI (2005) A developing view of the origins of urgency: the importance of animal models. BJU Int 96(suppl 1):22–28

    Google Scholar 

  • Gillespie JI, Harvey IJ, Drake MJ (2003) Agonist- and nerve-induced phasic activity in the isolated whole bladder of the guinea pig: evidence for two types of bladder activity. Exp Physiol 88(3):343–357

    Article  CAS  PubMed  Google Scholar 

  • Griffiths D et al (2007) Cerebral control of the bladder in normal and urge-incontinent women. Neuroimage 37(1):1–7

    Article  PubMed  Google Scholar 

  • Griffiths DJ et al (2009) Cerebral control of the lower urinary tract: how age-related changes might predispose to urge incontinence. Neuroimage 47(3):981–986

    Google Scholar 

  • Haferkamp A, Dorsam J, Elbadawi A (2003a) Ultrastructural diagnosis of neuropathic detrusor overactivity: validation of a common myogenic mechanism. Adv Exp Med Biol 539(Pt A):281–291

    Google Scholar 

  • Haferkamp A et al (2003b) Structural basis of neurogenic bladder dysfunction. III. Intrinsic detrusor innervation. J Urol 169(2):555–562

    Article  PubMed  Google Scholar 

  • Hanna-Mitchell AT et al (2007) Non-neuronal acetylcholine and urinary bladder urothelium. Life Sci 80(24–25):2298–2302

    Article  CAS  PubMed  Google Scholar 

  • Hannestad YS et al (2003) Are smoking and other lifestyle factors associated with female urinary incontinence? The Norwegian EPINCONT Study. BJOG 110(3):247–254

    Article  PubMed  Google Scholar 

  • Hao CM, Breyer MD (2008) Physiological regulation of prostaglandins in the kidney. Annu Rev Physiol 70:357–377

    Article  CAS  PubMed  Google Scholar 

  • Hashim H, Abrams P (2006) Is the bladder a reliable witness for predicting detrusor overactivity? J Urol 175(1):191–194; discussion 194–195

    Google Scholar 

  • Hashim H, Abrams P (2007) Overactive bladder: an update. Curr Opin Urol 17(4):231–236

    Article  PubMed  Google Scholar 

  • Hashitani H, Bramich NJ, Hirst GD (2000) Mechanisms of excitatory neuromuscular transmission in the guinea-pig urinary bladder. J Physiol 524(Pt 2):565–79

    Article  CAS  PubMed  Google Scholar 

  • Hashitani H et al (2001) Origin and propagation of spontaneous excitation in smooth muscle of the guinea-pig urinary bladder. J Physiol 530(Pt 2):273–286

    Article  CAS  PubMed  Google Scholar 

  • Hau J (2008) Animal models for human disease. In: Conn PM (ed) Sourcebook of models for biomedical research. Humana, New Jersey

    Google Scholar 

  • Hu P et al (2002) Role of membrane proteins in permeability barrier function: uroplakin ablation elevates urothelial permeability. Am J Physiol Renal Physiol 283(6):F1200–F1207

    CAS  PubMed  Google Scholar 

  • Igawa Y, Mattiasson A, Andersson KE (1992) Is bladder hyperactivity due to outlet obstruction in the rat related to changes in reflexes or to myogenic changes in the detrusor? Acta Physiol Scand 146(3):409–411

    Article  CAS  PubMed  Google Scholar 

  • Imamura T et al (2008) Cold environmental stress induces detrusor overactivity via resiniferatoxin-sensitive nerves in conscious rats. Neurourol Urodyn 27(4):348–352

    Article  PubMed  Google Scholar 

  • Inoue R, Brading AF (1991) Human, pig and guinea-pig bladder smooth muscle cells generate similar inward currents in response to purinoceptor activation. Br J Pharmacol 103(4):1840–1841

    CAS  PubMed  Google Scholar 

  • Insel TR (2007) From animal models to model animals. Biol Psychiatry 62(12):1337–1339

    Article  PubMed  Google Scholar 

  • Iosif CS, Bekassy Z (1984) Prevalence of genito-urinary symptoms in the late menopause. Acta Obstet Gynecol Scand 63(3):257–260

    Article  CAS  PubMed  Google Scholar 

  • Irwin DE et al (2006) Population-based survey of urinary incontinence, overactive bladder, and other lower urinary tract symptoms in five countries: results of the EPIC study. Eur Urol 50(6):1306–1314; discussion 1314–1315

    Google Scholar 

  • Irwin DE et al (2006b) Impact of overactive bladder symptoms on employment, social interactions and emotional well-being in six European countries. BJU Int 97(1):96–100

    Article  PubMed  Google Scholar 

  • Irwin DE et al (2009) Prevalence, severity, and symptom bother of lower urinary tract symptoms among men in the epic study: impact of overactive bladder. Eur Urol 56:14–20

    Google Scholar 

  • Jin LH et al (2009) Substantial detrusor overactivity in conscious spontaneously hypertensive rats with hyperactive behaviour. Scand J Urol Nephrol 43(1):3–7

    Article  PubMed  Google Scholar 

  • Jorgensen TM et al (1983) Experimental bladder hyperreflexia in pigs. Urol Res 11(5):239–240

    Article  CAS  PubMed  Google Scholar 

  • Jositsch G et al (2009) Suitability of muscarinic acetylcholine receptor antibodies for immunohistochemistry evaluated on tissue sections of receptor gene-deficient mice. Naunyn Schmiedebergs Arch Pharmacol 379(4):389–395

    Article  CAS  PubMed  Google Scholar 

  • Kato K et al (1988) The functional effect of mild outlet obstruction on the rabbit urinary bladder. J Urol 140(4):880–884

    CAS  PubMed  Google Scholar 

  • Kim JC et al (2005) Changes of urinary nerve growth factor and prostaglandins in male patients with overactive bladder symptom. Int J Urol 12(10):875–880

    Article  CAS  PubMed  Google Scholar 

  • Kim JC et al (2006) Nerve growth factor and prostaglandins in the urine of female patients with overactive bladder. J Urol 175(5):1773–1776; discussion 1776

    Google Scholar 

  • Kuiper GG et al (1996) Cloning of a novel receptor expressed in rat prostate and ovary. Proc Natl Acad Sci USA 93(12):5925–5930

    Article  CAS  PubMed  Google Scholar 

  • Kuiper GG et al (1997) Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology 138(3):863–870

    Article  CAS  PubMed  Google Scholar 

  • Kuo HC, Liu HT, Yang WC (2006) Therapeutic effect of multiple resiniferatoxin intravesical instillations in patients with refractory detrusor overactivity: a randomized, double-blind, placebo controlled study. J Urol 176(2):641–645

    Article  CAS  PubMed  Google Scholar 

  • Macfarlane GJ et al (1996) The relationship between sexual life and urinary condition in the French community. J Clin Epidemiol 49(10):1171–1176

    Article  CAS  PubMed  Google Scholar 

  • Makela S et al (2000) Differential expression of estrogen receptors alpha and beta in adult rat accessory sex glands and lower urinary tract. Mol Cell Endocrinol 170(1–2):219–229

    CAS  PubMed  Google Scholar 

  • Masuda H et al (2007) Effects of anaesthesia on the nitrergic pathway during the micturition reflex in rats. BJU Int 100(1):175–180

    Article  CAS  PubMed  Google Scholar 

  • Matsui M et al (2002) Mice lacking M2 and M3 muscarinic acetylcholine receptors are devoid of cholinergic smooth muscle contractions but still viable. J Neurosci 22(24):10627–10632

    CAS  PubMed  Google Scholar 

  • Matute-Bello G, Frevert CW, Martin TR (2008) Animal models of acute lung injury. Am J Physiol Lung Cell Mol Physiol 295(3):L379–L399

    Article  CAS  PubMed  Google Scholar 

  • McCafferty GP et al (2008) Enhanced bladder capacity and reduced prostaglandin E2-mediated bladder hyperactivity in EP3 receptor knockout mice. Am J Physiol Renal Physiol 295(2):F507–F514

    Article  CAS  PubMed  Google Scholar 

  • McMurray G, Casey JH, Naylor AM (2006) Animal models in urological disease and sexual dysfunction. Br J Pharmacol 147(suppl 2):S62–S79

    Article  CAS  PubMed  Google Scholar 

  • Mogensen J, Holm S (1989) Basic research and animal models in neuroscience – the necessity of co-evolution. Scand J Lab Anim Sci 16(Suppl 1):51

    Google Scholar 

  • Morrison J, Steers WD, Brading A (2002) Neurophysiology and neuropharmacology. In: Abrams P et al (eds) Incontinence: 2nd international consultation on incontinence. Plymbridge, Plymouth, pp 85–161

    Google Scholar 

  • Oh SJ et al (1999) Carbachol-induced sustained tonic contraction of rat detrusor muscle. BJU Int 84(3):343–349

    Article  CAS  PubMed  Google Scholar 

  • Pampinella F et al (1997) Time-dependent remodeling of the bladder wall in growing rabbits after partial outlet obstruction. J Urol 157(2):677–682

    Article  CAS  PubMed  Google Scholar 

  • Pandita RK, Andersson KE (2002) Intravesical adenosine triphosphate stimulates the micturition reflex in awake, freely moving rats. J Urol 168(3):1230–1234

    Article  CAS  PubMed  Google Scholar 

  • Pandita RK, Mizusawa H, Andersson KE (2000) Intravesical oxyhemoglobin initiates bladder overactivity in conscious, normal rats. J Urol 164(2):545–550

    Article  CAS  PubMed  Google Scholar 

  • Persson K et al (1998) Spinal and peripheral mechanisms contributing to hyperactive voiding in spontaneously hypertensive rats. Am J Physiol 275(4 Pt 2):R1366–R1373

    CAS  PubMed  Google Scholar 

  • Petry KG et al (2000) Experimental allergic encephalomyelitis animal models for analyzing features of multiple sclerosis. Pathol Biol 48(1):47–53

    CAS  PubMed  Google Scholar 

  • Ponholzer A et al (2004) Association between lower urinary tract symptoms and erectile dysfunction. Urology 64(4):772–776

    Article  PubMed  Google Scholar 

  • Pradidarcheep W et al (2009) Lack of specificity of commercially available antisera against muscarinergic and adrenergic receptors. Naunyn Schmiedebergs Arch Pharmacol 379(4):397–402

    Article  CAS  PubMed  Google Scholar 

  • Rahman NU et al (2007) An animal model to study lower urinary tract symptoms and erectile dysfunction: the hyperlipidaemic rat. BJU Int 100(3):658–663

    Article  PubMed  Google Scholar 

  • Ruch TC, Tang PC (1956) Localization of brain stem and diencephalic areas controlling the micturation reflex. J Comp Neurol 106(1):213–245

    Article  CAS  PubMed  Google Scholar 

  • Rufford J et al (2003) A double-blind placebo-controlled trial on the effects of 25 mg estradiol implants on the urge syndrome in postmenopausal women. Int Urogynecol J Pelvic Floor Dysfunct 14(2):78–83

    Article  PubMed  Google Scholar 

  • Schroder A et al (2003) Estrogen receptor subtypes and afferent signaling in the bladder. J Urol 170(3):1013–1016

    Article  PubMed  CAS  Google Scholar 

  • Schussler B (1990) Comparison of the mode of action of prostaglandin E2 (PGE2) and sulprostone, a PGE2-derivative, on the lower urinary tract in healthy women. A urodynamic study. Urol Res 18(5):349–352

    Article  CAS  PubMed  Google Scholar 

  • Seaman EK et al (1994) Persistence or recurrence of symptoms after transurethral resection of the prostate: a urodynamic assessment. J Urol 152(3):935–937

    CAS  PubMed  Google Scholar 

  • Sibley GN (1984) A comparison of spontaneous and nerve-mediated activity in bladder muscle from man, pig and rabbit. J Physiol 354:431–443

    CAS  PubMed  Google Scholar 

  • Sibley GN (1985) An experimental model of detrusor instability in the obstructed pig. Br J Urol 57(3):292–298

    Article  CAS  PubMed  Google Scholar 

  • Singh G, Wilkinson JM, Thomas DG (1997) Supravesical diversion for incontinence: a long-term follow-up. Br J Urol 79(3):348–353

    CAS  PubMed  Google Scholar 

  • Sirls LT, Zimmern PE, Leach GE (1994) Role of limited evaluation and aggressive medical management in multiple sclerosis: a review of 113 patients. J Urol 151(4):946–950

    CAS  PubMed  Google Scholar 

  • Sjogren C et al (1982) Atropine resistance of transmurally stimulated isolated human bladder muscle. J Urol 128(6):1368–1371

    CAS  PubMed  Google Scholar 

  • Son H et al (2007) New unstable bladder model in hypercholesterolemia rats. Urology 69(1):186–190

    Article  PubMed  Google Scholar 

  • Sun Y et al (2001) Augmented stretch activated adenosine triphosphate release from bladder uroepithelial cells in patients with interstitial cystitis. J Urol 166(5):1951–1956

    Article  CAS  PubMed  Google Scholar 

  • The Chimpanzee Sequencing and Analysis Consortium (2005) Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437(7055):69–87

    Article  CAS  Google Scholar 

  • Thomas AW, Abrams P (2000) Lower urinary tract symptoms, benign prostatic obstruction and the overactive bladder. BJU Int 85(suppl 3):57–68; discussion 70–71

    Google Scholar 

  • Truss MC et al (2000) Initial clinical experience with the selective phosphodiesterase-I isoenzyme inhibitor vinpocetine in the treatment of urge incontinence and low compliance bladder. World J Urol 18(6):439–443

    Article  CAS  PubMed  Google Scholar 

  • Turner WH, Brading AF (1997) Smooth muscle of the bladder in the normal and the diseased state: pathophysiology, diagnosis and treatment. Pharmacol Ther 75(2):77–110

    Article  CAS  PubMed  Google Scholar 

  • Van Os-Bossagh P et al (2001) Micromotions of bladder wall in chronic pelvic pain (CPP): a pilot study. Int Urogynecol J Pelvic Floor Dysfunct 12(2):89–96

    Article  PubMed  Google Scholar 

  • VanderHorst VG et al (1997) Estrogen receptor-immunoreactive neurons in the lumbosacral cord projecting to the periaqueductal gray in the ovariectomized female cat. Neurosci Lett 236(1):25–28

    Article  CAS  PubMed  Google Scholar 

  • VanderHorst VG et al (1998) Estrogen receptor-alpha-immunoreactive neurons in the periaqueductal gray of the adult ovariectomized female cat. Neurosci Lett 240(1):13–16

    Article  CAS  PubMed  Google Scholar 

  • VanderHorst VG, Meijer E, Holstege G (2001) Estrogen receptor-alpha immunoreactivity in parasympathetic preganglionic neurons innervating the bladder in the adult ovariectomized cat. Neurosci Lett 298(3):147–150

    Article  CAS  PubMed  Google Scholar 

  • Varki A, Altheide TK (2005) Comparing the human and chimpanzee genomes: searching for needles in a haystack. Genome Res 15(12):1746–1758

    Article  CAS  PubMed  Google Scholar 

  • Venter JC (2010) Multiple personal genomes await. Nature 464(7289):676–677

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Luthin GR, Ruggieri MR (1995) Muscarinic acetylcholine receptor subtypes mediating urinary bladder contractility and coupling to GTP binding proteins. J Pharmacol Exp Ther 273(2):959–966

    CAS  PubMed  Google Scholar 

  • Wang ZY et al (2008) Lack of TRPV1 inhibits cystitis-induced increased mechanical sensitivity in mice. Pain 139(1):158–167

    Article  CAS  PubMed  Google Scholar 

  • Wolffenbuttel KP et al (2001) Urodynamic follow-up of experimental urethral obstruction in individual guinea pigs. Neurourol Urodyn 20(6):699–713

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi O et al (2009) Clinical guidelines for overactive bladder. Int J Urol 16(2):126–142

    Article  CAS  PubMed  Google Scholar 

  • Yamanishi T et al (2000) The role of M(2)-muscarinic receptors in mediating contraction of the pig urinary bladder in vitro. Br J Pharmacol 131(7):1482–1488

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama O et al (1997) Influence of anesthesia on bladder hyperactivity induced by middle cerebral artery occlusion in the rat. Am J Physiol 273(6 Pt 2):R1900–R1907

    CAS  PubMed  Google Scholar 

  • Yokoyama O et al (1998a) Change in bladder contractility associated with bladder overactivity in rats with cerebral infarction. J Urol 159(2):577–580

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama O et al (1998b) Effects of MK-801 on bladder overactivity in rats with cerebral infarction. J Urol 159(2):571–576

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama O et al (1999) Glutamatergic and dopaminergic contributions to rat bladder hyperactivity after cerebral artery occlusion. Am J Physiol 276(4 Pt 2):R935–R942

    CAS  PubMed  Google Scholar 

  • Yokoyama O et al (2000) Role of the forebrain in bladder overactivity following cerebral infarction in the rat. Exp Neurol 163(2):469–476

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura N et al (1993) The dopamine D1 receptor agonist SKF 38393 suppresses detrusor hyperreflexia in the monkey with parkinsonism induced by 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP). Neuropharmacology 32(4):315–321

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus J. Drake .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Parsons, B.A., Drake, M.J. (2011). Animal Models in Overactive Bladder Research. In: Andersson, KE., Michel, M. (eds) Urinary Tract. Handbook of Experimental Pharmacology, vol 2011. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16499-6_2

Download citation

Publish with us

Policies and ethics