Skip to main content

Ion Channel Modulators and Urinary Tract Function

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 2011))

Abstract

The membrane potential fulfils an important role in initiating smooth muscle contraction, through its depolarization and the subsequent influx of Ca2+ through voltage-gated Ca2+ channels. Changes in membrane potential can also coordinate contraction across great distances, utilizing the speed of electrical current flow through gap junctions. Hence, regulating membrane potential can greatly influence smooth muscle function. In this chapter, we will consider the influence of ion channels, as dynamic gatekeepers of membrane permeability, on urogenital function. Through their ability to act as key regulators of both the resting membrane potential and its dynamic changes, they provide important pharmacological targets for influencing urogenital function.

Urogenital smooth muscle and urothelia contain a diverse range of molecularly and functionally distinct K+ channels, which are key to regulating the resting membrane and for re-establishing the normal membrane potential following both active and passive changes. The voltage-gated Ca2+ channels are key to initiating contraction and causing rapid depolarization, supplemented in some smooth muscles by rapid Na+ conductances. The Cl channels, often assumed to be passive, can actively change the membrane potential, and hence, cellular function, because Cl is not usually at its equilibrium potential. The useful ways in which these ion channels can be targeted therapeutically in the ureter, bladder and urethra are discussed, focussing particularly on treatments for ureteric obstruction and detrusor overactivity. Current treatments for many urinary tract disorders, particularly the overactive bladder, are complicated by side effects. While ion channels have traditionally been considered as poor therapeutic targets by the pharmaceutical industry, our increasing knowledge of the molecular diversity of K+ and Cl channels gives new hope for more narrowly focused drug targeting, while the exciting discoveries of active currents in interstitial cells give us a new set of cellular targets for drugs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adrian RH (1961) Internal chloride concentration and chloride efflux of frog muscle. J Physiol 156:623–632

    CAS  PubMed  Google Scholar 

  • Aickin CC, Brading AF (1983) Towards an estimate of chloride permeability in the smooth muscle of guinea-pig vas deferens. J Physiol 336:179–197

    CAS  PubMed  Google Scholar 

  • Andersson KE, Holmquist F, Fovaeus M, Hedlund H, Sundler R (1991) Muscarinic receptor stimulation of phosphoinositide hydrolysis in the human isolated urinary bladder. J Urol 146(4):1156–1159

    CAS  PubMed  Google Scholar 

  • Ashcroft FM, Gribble FM (1998) Correlating structure and function in ATP-sensitive K+ channels. Trends Neurosci 21(7):288–294

    Article  CAS  PubMed  Google Scholar 

  • Berra-Romani R, Blaustein MP, Matteson DR (2005) TTX-sensitive voltage-gated Na+ channels are expressed in mesenteric artery smooth muscle cells. Am J Physiol Heart Circ Physiol 289(1):H137–H145. doi:10.1152/ajpheart.01156.2004

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya BJ, Lee E, Krupin D, Hockberger P, Krupin T (2002) (-)-Isoproterenol modulation of maxi-K+ channel in nonpigmented ciliary epithelial cells through a G-protein gated pathway. Curr Eye Res 24(3):173–181

    Article  PubMed  Google Scholar 

  • Brading AF, McCloskey KD (2005) Mechanisms of disease: specialized interstitial cells of the urinary tract – an assessment of current knowledge. Nat Clin Prac 2(11):546–554

    Article  Google Scholar 

  • Brading AF, Turner WH (1996) Potassium channels and their modulation in the urogenital tract smooth muscles. In: Evans JM, Hamilton TC, Longham SD, Stemp G (eds) Potassium channels and their modulators: from synthesis to clinical experience. Taylor and Francis, London, pp 335–359

    Google Scholar 

  • Brading A, Bulbring E, Tomita T (1969) The effect of sodium and calcium on the action potential of the smooth muscle of the guinea-pig taenia coli. J Physiol 200(3):637–654

    CAS  PubMed  Google Scholar 

  • Burdyga T, Wray S (2005) Action potential refractory period in ureter smooth muscle is set by Ca sparks and BK channels. Nature 436(7050):559–562

    Article  CAS  PubMed  Google Scholar 

  • Choe S (2002) Potassium channel structures. Nat Rev Neurosci 3(2):115–121. doi:10.1038/nrn727

    Article  CAS  PubMed  Google Scholar 

  • Clapham DE (2003) TRP channels as cellular sensors. Nature 426(6966):517–524

    Article  CAS  PubMed  Google Scholar 

  • Clapham DE (2004) Mammalian TRP channels as molecular targets. Novartis Foundation Symposium, vol 258. Wiley, Chichester

    Google Scholar 

  • Creed KE, Ishikawa S, Ito Y (1983) Electrical and mechanical activity recorded from rabbit urinary bladder in response to nerve stimulation. J Physiol 338:149–164

    CAS  PubMed  Google Scholar 

  • Curtis HJ, Cole KS (1940) Membrane action potentials from the squid giant axon. J Cell Comp Physiol 15:147–157

    Article  Google Scholar 

  • Davidson RA, McCloskey KD (2005) Morphology and localization of interstitial cells in the guinea pig bladder: structural relationships with smooth muscle and neurons. J Urol 173(4):1385–1390

    Article  PubMed  Google Scholar 

  • Dixon JS, Gosling JA (1973) The fine structure of pacemaker cells in the pig renal calices. Anat Rec 175(2):139–153. doi:10.1002/ar.1091750203

    Article  CAS  PubMed  Google Scholar 

  • Dixon JS, Gosling JA (1982) The musculature of the human renal calices, pelvis and upper ureter. J Anat 135(1):129–137

    CAS  PubMed  Google Scholar 

  • Drake MJ, Hedlund P, Andersson KE, Brading AF, Hussain I, Fowler C, Landon DN (2003) Morphology, phenotype and ultrastructure of fibroblastic cells from normal and neuropathic human detrusor: absence of myofibroblast characteristics. J Urol 169(4):1573–1576. doi:10.1097/01.ju.0000054928.34777.37

    Article  PubMed  Google Scholar 

  • Evans RJ (2009) Orthosteric and allosteric binding sites of P2X receptors. Eur Biophys J 38(3):319–327. doi:10.1007/s00249-008-0275-2

    Article  CAS  PubMed  Google Scholar 

  • Fanger CM, Ghanshani S, Logsdon NJ, Rauer H, Kalman K, Zhou J, Beckingham K, Chandy KG, Cahalan MD, Aiyar J (1999) Calmodulin mediates calcium-dependent activation of the intermediate conductance KCa channel, IKCa1. J Biol Chem 274(9):5746–5754

    Article  CAS  PubMed  Google Scholar 

  • Frazier EP, Mathy MJ, Peters SL, Michel MC (2005) Does cyclic AMP mediate rat urinary bladder relaxation by isoproterenol? J Pharmacol Exp Ther 313(1):260–267. doi:jpet.104.077768 [pii] 10.1124/jpet.104.077768

    Article  CAS  PubMed  Google Scholar 

  • Fujii K (1988) Evidence for adenosine triphosphate as an excitatory transmitter in guinea-pig, rabbit and pig urinary bladder. J Physiol 404:39–52

    CAS  PubMed  Google Scholar 

  • Fujii K, Foster CD, Brading AF, Parekh AB (1990) Potassium channel blockers and the effects of cromakalim on the smooth muscle of the guinea-pig bladder. Br J Pharmacol 99(4):779–785

    CAS  PubMed  Google Scholar 

  • Gloyn AL, Pearson ER, Antcliff JF, Proks P, Bruining GJ, Slingerland AS, Howard N, Srinivasan S, Silva JM, Molnes J, Edghill EL, Frayling TM, Temple IK, Mackay D, Shield JP, Sumnik Z, van Rhijn A, Wales JK, Clark P, Gorman S, Aisenberg J, Ellard S, Njolstad PR, Ashcroft FM, Hattersley AT (2004) Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N Engl J Med 350(18):1838–1849. doi:10.1056/NEJMoa032922

    Article  CAS  PubMed  Google Scholar 

  • Hashitani H, Brading AF (2003a) Electrical properties of detrusor smooth muscles from the pig and human urinary bladder. Br J Pharmacol 140(1):146–158. doi:10.1038/sj.bjp. 0705319

    Article  CAS  PubMed  Google Scholar 

  • Hashitani H, Brading AF (2003b) Ionic basis for the regulation of spontaneous excitation in detrusor smooth muscle cells of the guinea-pig urinary bladder. Br J Pharmacol 140(1):159–169. doi:10.1038/sj.bjp. 0705320

    Article  CAS  PubMed  Google Scholar 

  • Hashitani H, Edwards FR (1999) Spontaneous and neurally activated depolarizations in smooth muscle cells of the guinea-pig urethra. J Physiol 514(2):459–470

    Article  CAS  PubMed  Google Scholar 

  • Hashitani H, Suzuki H (1995) Electrical and mechanical responses produced by nerve stimulation in detrusor smooth muscle of the guinea-pig. Eur J Pharmacol 284(1–2):177–183

    Article  CAS  PubMed  Google Scholar 

  • Hashitani H, Van Helden DF, Suzuki H (1996) Properties of spontaneous depolarizations in circular smooth muscle cells of rabbit urethra. Br J Pharmacol 118(7):1627–1632

    CAS  PubMed  Google Scholar 

  • Hashitani H, Bramich NJ, Hirst GD (2000) Mechanisms of excitatory neuromuscular transmission in the guinea-pig urinary bladder. J Physiol 524:565–579

    Article  CAS  PubMed  Google Scholar 

  • Hashitani H, Fukuta H, Takano H, Klemm MF, Suzuki H (2001) Origin and propagation of spontaneous excitation in smooth muscle of the guinea-pig urinary bladder. J Physiol 530:273–286

    Article  CAS  PubMed  Google Scholar 

  • Hashitani H, Brading AF, Suzuki H (2004a) Correlation between spontaneous electrical, calcium and mechanical activity in detrusor smooth muscle of the guinea-pig bladder. Br J Pharmacol 141(1):183–193. doi:10.1038/sj.bjp. 0705602

    Article  CAS  PubMed  Google Scholar 

  • Hashitani H, Yanai Y, Suzuki H (2004b) Role of interstitial cells and gap junctions in the transmission of spontaneous Ca2+ signals in detrusor smooth muscles of the guinea-pig urinary bladder. J Physiol 559(Pt 2):567–581. doi:10.1113/jphysiol.2004.065136

    Article  CAS  PubMed  Google Scholar 

  • Hegde SS (2006) Muscarinic receptors in the bladder: from basic research to therapeutics. Br J Pharmacol 147(S2):S80–S87. doi:10.1038/sj.bjp.0706560

    Article  CAS  PubMed  Google Scholar 

  • Hodgkin AL, Huxley AF (1939) Action potentials recorded from inside a nerve fibre. Nature 144(3651):710–711

    Article  Google Scholar 

  • Hodgkin AL, Huxley AF (1990) A quantitative description of membrane current and its application to conduction and excitation in nerve. 1952. Bull Math Biol 52(1-2):25–71, discussion 25–23

    CAS  PubMed  Google Scholar 

  • Hollywood MA, Sergeant GP, McHale NG, Thornbury KD (2003) Activation of Ca2+-activated Cl current by depolarizing steps in rabbit urethral interstitial cells. Am J Physiol Cell Physiol 285(2):C327–C333. doi:10.1152/ajpcell.00413.2002

    CAS  PubMed  Google Scholar 

  • Jarvis MF, Khakh BS (2009) ATP-gated P2X cation-channels. Neuropharmacology 56(1):208–215. doi:10.1016/j.neuropharm.2008.06.067

    Article  CAS  PubMed  Google Scholar 

  • Klemm MF, Exintaris B, Lang RJ (1999) Identification of the cells underlying pacemaker activity in the guinea-pig upper urinary tract. J Physiol 519(3):867–884

    Article  CAS  PubMed  Google Scholar 

  • Kubota Y, Hashitani H, Shirasawa N, Kojima Y, Sasaki S, Mabuchi Y, Soji T, Suzuki H, Kohri K (2008) Altered distribution of interstitial cells in the guinea pig bladder following bladder outlet obstruction. Neurourol Urodyn 27(4):330–340. doi:10.1002/nau.20502

    Article  PubMed  Google Scholar 

  • Kuriyama H, Tomita T (1970) The action potential in the smooth muscle of the guinea pig taenia coli and ureter studied by the double sucrose-gap method. J Gen Physiol 55(2):147–162

    Article  CAS  PubMed  Google Scholar 

  • Lang RJ (1989) Identification of the major membrane currents in freshly dispersed single smooth muscle cells of guinea-pig ureter. J Physiol 412:375–395

    CAS  PubMed  Google Scholar 

  • Lang RJ, Zhang Y, Exintaris B, Vogalis F (1995) Effects of nerve stimulation on the spontaneous action potentials recorded in the proximal renal pelvis of the guinea-pig. Urol Res 23(5):343–350

    Article  CAS  PubMed  Google Scholar 

  • Lesage F, Guillemare E, Fink M, Duprat F, Lazdunski M, Romey G, Barhanin J (1996) TWIK-1, a ubiquitous human weakly inward rectifying K+ channel with a novel structure. EMBO J 15(5):1004–1011

    CAS  PubMed  Google Scholar 

  • Logothetis DE, Kurachi Y, Galper J, Neer EJ, Clapham DE (1987) The beta gamma subunits of GTP-binding proteins activate the muscarinic K+ channel in heart. Nature 325(6102):321–326. doi:10.1038/325321a0

    Article  CAS  PubMed  Google Scholar 

  • Lopatin AN, Makhina EN, Nichols CG (1994) Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature 372(6504):366–369. doi:10.1038/372366a0

    Article  CAS  PubMed  Google Scholar 

  • Lopes CM, Remon JI, Matavel A, Sui JL, Keselman I, Medei E, Shen Y, Rosenhouse-Dantsker A, Rohacs T, Logothetis DE (2007) Protein kinase A modulates PLC-dependent regulation and PIP2-sensitivity of K+ channels. Channels (Austin) 1(2):124–134. doi:4322 [pii]

    Google Scholar 

  • Maggi CA, Meli A (1984) Eserine-induced hypertone of guinea pig distal colon in vivo: a new pharmacological procedure for testing smooth muscle relaxants. J Pharmacol Methods 12(2):91–96

    Article  CAS  PubMed  Google Scholar 

  • Maggi CA, Giuliani S, Santicioli P, Brading AF (1996) Role of intracellular Ca2+ in the K channel opener action of CGRP in the guinea-pig ureter. Br J Pharmacol 118(6):1493–1503

    CAS  PubMed  Google Scholar 

  • McCloskey KD (2005) Characterization of outward currents in interstitial cells from the guinea pig bladder. J Urol 173(1):296–301

    Article  CAS  PubMed  Google Scholar 

  • McCloskey KD (2006) Calcium currents in interstitial cells from the guinea-pig bladder. BJU Int 97(6):1338–1343. doi:10.1111/j.1464-410X.2006.06156.x

    Article  CAS  PubMed  Google Scholar 

  • McCloskey KD (2010) Interstitial cells in the urinary bladder-localization and function. Neurourol Urodyn 29(1):82–87. doi:10.1002/nau.20739

    Article  PubMed  Google Scholar 

  • McCloskey KD, Anderson UA, Davidson RA, Bayguinov YR, Sanders KM, Ward SM (2009) Comparison of mechanical and electrical activity and interstitial cells of Cajal in urinary bladders from wild-type and W/Wv mice. Br J Pharmacol 156(2):273–283. doi:10.1111/j.1476-5381.2008.00006.x

    Article  CAS  PubMed  Google Scholar 

  • Miller C, Moczydlowski E, Latorre R, Phillips M (1985) Charybdotoxin, a protein inhibitor of single Ca2 + -activated K + channels from mammalian skeletal muscle. Nature 313(6000):316–318

    Article  CAS  PubMed  Google Scholar 

  • Nakajima T, Jo T, Meguro K, Oonuma H, Ma J, Kubota N, Imuta H, Takano H, Iida H, Nagase T, Nagata T (2008) Effect of dexamethasone on voltage-gated Na+ channel in cultured human bronchial smooth muscle cells. Life Sci 82(23–24):1210–1215. doi:10.1016/j.lfs.2008.04.007

    Article  CAS  PubMed  Google Scholar 

  • Neild TO, Thomas RC (1973) New design for a chloride-sensitive micro-electrode. J Physiol 231(1):7P–8P

    CAS  PubMed  Google Scholar 

  • Nelson MT, Quayle JM (1995) Physiological roles and properties of potassium channels in arterial smooth muscle. Am J Physiol 268(4 Pt 1):C799–C822

    CAS  PubMed  Google Scholar 

  • Ng SW, di Capite J, Singaravelu K, Parekh AB (2008) Sustained activation of the tyrosine kinase Syk by antigen in mast cells requires local Ca2+ influx through Ca2+ release-activated Ca2+ channels. J Biol Chem 283(46):31348–31355. doi:10.1074/jbc.M804942200

    Article  CAS  PubMed  Google Scholar 

  • Nilius B, Droogmans G (2003) Amazing chloride channels: an overview. Acta Physiol Scand 177(2):119–147

    Article  CAS  PubMed  Google Scholar 

  • Parekh AB (2006) Cell biology: cracking the calcium entry code. Nature 441(7090):163–165

    Article  CAS  PubMed  Google Scholar 

  • Platoshyn O, Remillard CV, Fantozzi I, Sison T, Yuan JX (2005) Identification of functional voltage-gated Na+ channels in cultured human pulmonary artery smooth muscle cells. Pflugers Arch 451(2):380–387. doi:10.1007/s00424-005-1478-3

    Article  CAS  PubMed  Google Scholar 

  • Seki N, Suzuki H (1990) Electrical properties of smooth muscle cell membrane in renal pelvis of rabbits. Am J Physiol 259:F888–F894

    CAS  PubMed  Google Scholar 

  • Sergeant GP, Hollywood MA, McCloskey KD, Thornbury KD, McHale NG (2000) Specialised pacemaking cells in the rabbit urethra. J Physiol 526(Pt 2):359–366. doi:PHY_0872 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Shuba MF (1977) The effect of sodium-free and potassium-free solutions, ionic current inhibitors and ouabain on electrophysiological properties of smooth muscle of guinea-pig ureter. J Physiol 264(3):837–851

    CAS  PubMed  Google Scholar 

  • Suzuki M, Morita T, Iwamoto T (2006) Diversity of Cl channels. Cell Mol Life Sci 63(1):12–24. doi:10.1007/s00018-005-5336-4

    Article  CAS  PubMed  Google Scholar 

  • Teramoto N, Brading AF (1996) Activation by levcromakalim and metabolic inhibition of glibenclamide-sensitive K channels in smooth muscle cells of pig proximal urethra. Br J Pharmacol 118(3):635–642

    CAS  PubMed  Google Scholar 

  • Toro L, Ramos-Franco J, Stefani E (1990) GTP-dependent regulation of myometrial KCa channels incorporated into lipid bilayers. J Gen Physiol 96(2):373–394

    Article  CAS  PubMed  Google Scholar 

  • Uchida H, Shishido K, Nomiya M, Yamaguchi O (2005) Involvement of cyclic AMP-dependent and -independent mechanisms in the relaxation of rat detrusor muscle via beta-adrenoceptors. Eur J Pharmacol 518(2–3):195–202. doi:10.1016/j.ejphar.2005.06.029

    Article  CAS  PubMed  Google Scholar 

  • Vaughan-Jones RD (1982) Chloride activity and its control in skeletal and cardiac muscle. Philos Trans R Soc Lond B Biol Sci 299(1097):537–548

    Article  CAS  PubMed  Google Scholar 

  • Verkman AS, Galietta LJ (2009) Chloride channels as drug targets. Nat Rev Drug Discov 8(2):153–171. doi:10.1038/nrd2780

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi O, Chapple CR (2007) Beta3-adrenoceptors in urinary bladder. Neurourol Urodyn 26(6):752–756

    Article  CAS  PubMed  Google Scholar 

  • Yoshida M, Miyamae K, Iwashita H, Otani M, Inadome A (2004) Management of detrusor dysfunction in the elderly: changes in acetylcholine and adenosine triphosphate release during aging. Urology 63(3 Suppl 1):17–23

    Article  PubMed  Google Scholar 

  • Young JS, Meng E, Cunnane TC, Brain KL (2008) Spontaneous purinergic neurotransmission in the mouse urinary bladder. J Physiol 586:5743–5755. doi:10.1113/jphysiol.2008.162040

    Article  CAS  PubMed  Google Scholar 

  • Zhu HL, Brain KL, Aishima M, Shibata A, Young JS, Sueishi K, Teramoto N (2008) Actions of two main metabolites of propiverine (M-1 and M-2) on voltage-dependent L-Type Ca2+ currents and Ca2+ transients in murine urinary bladder myocytes. J Pharm Exp Ther 324:118–127. doi:10.1124/jpet.107.130021

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Brading .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brading, A.F., Brain, K.L. (2011). Ion Channel Modulators and Urinary Tract Function. In: Andersson, KE., Michel, M. (eds) Urinary Tract. Handbook of Experimental Pharmacology, vol 2011. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16499-6_18

Download citation

Publish with us

Policies and ethics