Skip to main content

Astrophysical Aspects of High Energy Densities

  • Chapter
  • First Online:
Book cover Extreme States of Matter

Part of the book series: The Frontiers Collection ((FRONTCOLL))

  • 1394 Accesses

Abstract

High-energy-density physics underlies the contemporary understanding of the structure of astrophysical objects and their evolution, which takes place under the action of gravitational forces and thermonuclear energy release [105].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdo, A.A., Ackermann, M., Ajello, M., et al.: Measurementof the cosmic ray e+ + e- spectrum from 20 GeV to 1 TeVwith the Fermi Large Area Telescope. Phys. Rev. Lett. 102(18),181101 (2009). DOI 10.1103/PhysRevLett.102.181101. URL http://link.aps.org/abstract/PRL/v102/e181101

    Google Scholar 

  2. Abu-Zayyad, T., Belov, K., Bizel, J., et al.: Measurement of the cosmic raycomposition between 1017 eV and 1018 eV (1999). Presented at the 26th International Cosmic Ray Conference, Salt Lake City, UT, USA

    Google Scholar 

  3. Achterberg, A.: Particle acceleration by an ensemble of shocks. Astron. Astrophys. 231(1),251–258 (1990)

    ADS  Google Scholar 

  4. Achterberg, A., Gallant, Y.A., Kirk, J.G., Guthmann, A.W.: Particle accelerationby ultrarelativistic shocks: theory and simulations. Month. Notices R. Astron. Soc. 328(2),393–408 (2001). DOI 10.1046/j.1365-8711.2001.04851.

    Article  ADS  Google Scholar 

  5. Allard, F., Hauschildt, P.H., Alexander, D.R., Starrfield, S.: Model atmospheresof very low mass stars and brown dwarfs. Annu. Rev. Astron.Astrophys. 35, 137–177 (1997). DOI 10.1146/annurev.astro.35.1.137. URL http://arjournals.annualreviews.org/doi/abs/10.1146/annurev.a

    Google Scholar 

  6. Arkani-Hamed, N., Dimopoulos, S., Dvali, G.: Phenomenology, astrophysics,and cosmology of theories with submillimeter dimensions and TeV scalequantum gravity. Phys. Rev. D 59(8),086004 (1999). DOI 10.1103/PhysRevD.59.086004

    Article  ADS  Google Scholar 

  7. Arnett, D.: Oxygen-burning hydrodynamics. 1: Steady shell burning. Astrophys. J. 427(2),932–946 (1994)

    Article  ADS  Google Scholar 

  8. Arnett, D.: Supernovae and Nucleosynthesis. Princeton University Press,Princeton, NJ (1996)

    Google Scholar 

  9. Aschwanden, M.J.: Physics of the Solar Corona: An Introduction with Problemsand Solutions, 2nd edn. Springer, Berlin (2006)

    Google Scholar 

  10. Atzeni, S., Meyer-ter-Vehn, J.: The Physics of Inertial Fusion. Oxford UniversityPress, Oxford (2004)

    Book  Google Scholar 

  11. Avrorin, E.N., Simonenko, V.A., Shibarshov, L.I.: Physics researchduring nuclear explosions. Phys. Usp. 49(4),432(2006). DOI 10.1070/PU2006v049n04ABEH005958. URL http://ufn.ru/en/articles/2006/4/j/

  12. Avrorin, E.N., Vodolaga, B.K., Simonenko, V.A., Fortov, V.E.: Intenseshock waves and extreme states of matter. Phys. Usp. 36(5),337–364 (1993). DOI 10.1070/PU1993v036n05ABEH002158. URL http://stacks.iop.org/1063-7869/36/337

    Google Scholar 

  13. Ayukov, S.V., Baturin, A., Gryaznov, V.K., et al.: Analysis of the presence ofsmall admixtures of heavy elements in the solar plasma by using the SAHA-Sequation of state. JETP Lett. 80(3),141–144 (2004)

    Article  ADS  Google Scholar 

  14. Baade, W., Zwicky, F.: Cosmic Rays from Super-Novae.Proc. Natl. Acad. Sci. USA 20(5),259–263 (1934). URL http://www.pnas.org/content/20/5/259.short

  15. Balbus, S.A., Hawley, J.F.: A powerful local shear instability in weakly magnetizeddisks. I - Linear analysis. II - Nonlinear evolution. Astrophys. J. 376(1),214–233 (1991)

    Article  ADS  Google Scholar 

  16. Balega, Y.Y.: Brown dwarfs: substars without nuclear reactions. Phys. Usp. 45(8),883 (2002). DOI 10.1070/PU2002v045n08ABEH001191. URL http://ufn.ru/en/articles/2002/8/e/

  17. Balick, B., Frank, A.: The extraordinary deaths of ordinary stars. Sci. Am. 291(1),50 (2004)

    Article  Google Scholar 

  18. Bamber, C., Boege, S.J., Koffas, T., et al.: Studies of nonlinear QED incollisions of 46.6 GeV electrons with intense laser pulses. Phys. Rev.D 60(9),092004 (1999). DOI 10.1103/PhysRevD.60.092004. URL http://link.aps.org/abstract/PRD/v60/e092004

    Google Scholar 

  19. Baturin, V.A., Mironova, I.V., Surdin, V.G.: Fizika i jevoljucija zvezd (Physics and evolution of stars). In: V.G. Surdin (ed.) Astronomiya: Vek XXI (Astronomy: XXIst Century),p. 120. Vek 2, Fryazino (2007)

    Google Scholar 

  20. Baym, G., Pethick, C., Sutherland, P.: The ground state of matter at highdensities: Equation of state and stellar models. Astrophys. J. 170, 299 (1971)

    Article  ADS  Google Scholar 

  21. Begelman, M.C., Blandford, R.D., Rees, M.J.: Theory of extragalactic radiosources. Rev. Mod. Phys. 56(2),255–351 (1984). DOI 10.1103/RevModPhys.56.255

    Article  ADS  Google Scholar 

  22. Bell, A.R.: The acceleration of cosmic rays in shock fronts. I. Month. Notices R. Astron. Soc. 147-156, 022105 (1978)

    Google Scholar 

  23. Beskin, V.S., Gurevich, A.V., Istomin, Y.N.: Physics of the Pulsar Magnetosphere. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  24. Bezkrovniy, V., Filinov, V.S., Kremp, D., et al.: Monte Carloresults for the hydrogen Hugoniot. Phys. Rev. E 70(5),057401 (2004). DOI 10.1103/PhysRevE.70.057401. URL http://link.aps.org/abstract/PRE/v70/e057401

    Google Scholar 

  25. Bisnovatyi-Kogan, G.S.: Stellar Physics: 1: Fundamental Concepts and StellarEquilibrium. Springer, Berlin, Heidelberg (2001)

    Google Scholar 

  26. Bleicher, M.: How to create black holes on Earth. Eur. J. Phys. 28(3),509–516 (2007). URL http://stacks.iop.org/0143-0807/28/509

  27. Blinnikov, S.I., Novikov, I.D., Perevodchikova, T.V., Polnarev, A.G.: Explodingneutron stars in close binaries. Sov. Astron. Lett. 10(3),177 (1984)

    ADS  Google Scholar 

  28. Bondi, H., Hoyle, F.: On the mechanism of accretion by stars. Month. Notices R. Astron. Soc. 104, 273 (1944)

    ADS  Google Scholar 

  29. Bula, C., McDonald, K.T., Prebys, E.J., et al.: Observation of nonlineareffects in Compton scattering. Phys. Rev. Lett. 76(17),3116–3119 (1996). DOI 10.1103/PhysRevLett.76.3116. URL http://link.aps.org/abstract/PRL/v76/p3116

    Google Scholar 

  30. Burke, D.L., Field, R.C., Horton-Smith, G., et al.: Positron productionin multiphoton light-by-light scattering. Phys. Rev. Lett. 79(9),1626–1629 (1997). DOI 10.1103/PhysRevLett.79.1626. URL http://link.aps.org/abstract/PRL/v79/p1626

    Google Scholar 

  31. Burrows, A., Hubbard, W.B., Lunine, J.I., Liebert, J.: The theoryof brown dwarfs and extrasolar giant planets. Rev. Mod. Phys. 73(3),719–765 (2001). DOI 10.1103/RevModPhys.73.719. URL http://link.aps.org/abstract/RMP/v73/p719

    Google Scholar 

  32. Carroll, S.M.: The cosmic origins of time’s arrow. Sci. Am. 298(6),48 (2008)

    Article  Google Scholar 

  33. Chabrier, G., Baraffe, I.: Theory of low mass stars and substellarobjects. Annu. Rev. Astron. Astrophys. 38, 337–377 (2000). DOI 110.1146/annurev.astro.38.1.337. URL http://arjournals.annualreviews.org/doi/abs/10.1146/annurev.a

  34. Chang, J., Adams Jr., J.H., Ahn, H.S., et al.: An excess of cosmic ray electronsat energies of 300–800 GeV. Nature 456(7220),362–365 (2008). DOI{10.1038/nature07477}

    Article  ADS  Google Scholar 

  35. Chen, P., Tajima, T., Takahashi, Y.: Plasma wakefield accelerationfor ultrahigh-energy cosmic rays. Phys. Rev. Lett. 89(16),161101 (2002). DOI 10.1103/PhysRevLett.89.161101. URL http://link.aps.org/abstract/PRL/v89/e161101

    Google Scholar 

  36. Cherepashchuk, A.M.: Masses of black holes in binary stellar systems. Phys.Usp. 39(8),759 (1996). DOI 10.1070/PU1996v039n08ABEH000160. URL http://ufn.ru/en/articles/1996/8/a/

  37. Cherepashchuk, A.M.: Chernye dyry v dvojnyh zvezdnyh sistemah (Blackholes in double star systems). In: V.N. Soifer (ed.) Sovremennoe estestvoznanie.Entsiklopediya (Modern Natural Science. Encyclopedia),vol. 4, p.228. Magistr-Press, Moscow (2000)

    Google Scholar 

  38. Cherepashchuk, A.M.: Search for black holes. Phys. Usp. 46(4),335 (2003). DOI 10.1070/PU2003v046n04ABEH001282. URL http://ufn.ru/en/articles/2003/4/a/

  39. Cherepashchuk, A.M.: Chernye dyry vo Vselennoj (Black holes in the Universe).In: V.G. Surdin (ed.) Astronomiya: Vek XXI (Astronomy: XXIst Century),p. 219. Vek 2, Fryazino (2007)

    Google Scholar 

  40. Cherepashchuk, A.M., Chernin, A.D.: Vselennaja, zhizn’, chernye dyry (TheUniverse, Life, Black Holes). Vek 2, Fryazino (2004)

    Google Scholar 

  41. Chernin, A.D.: Cosmic vacuum. Phys. Usp. 44(11),1099(2001). DOI 10.1070/PU2001v044n11ABEH000962. URL http://ufn.ru/en/articles/2001/11/a/

  42. Chernin, A.D.: Dark energy and universal antigravitation. Phys. Usp. 51(3),253 (2008). DOI 10.1070/PU2008v051n03ABEH006320. URL http://ufn.ru/en/articles/2008/3/c/

    Google Scholar 

  43. Clark, E.L., Krushelnick, K., Davies, J.R., et al.: Measurementsof energetic proton transport through magnetized plasma fromintense laser interactions with solids. Phys. Rev. Lett. 84(4),670–673 (2000). DOI 10.1103/PhysRevLett.84.670. URL http://link.aps.org/abstract/PRL/v84/p670

    Google Scholar 

  44. Cowan, T.E., Hunt, A.W., Phillips, T.W., et al.: Photonuclear fission fromhigh energy electrons from ultraintense laser-solid interactions. Phys. Rev.Lett. 84(5),903–906 (2000). DOI 10.1103/PhysRevLett.84.903. URL http://link.aps.org/abstract/PRL/v84/p903

    Google Scholar 

  45. Cuneo, M.E., Vesey, R.A., Bennett, G.R., et al.: Progress in symmetric ICFcapsule implosions and wire-array Z-pinch source physics for double-pinchdrivenhohlraums. Plasma Phys. Control. Fusion 48(2),R1–R35 (2006). DOI 10.1088/0741-3335/48/2/R01

    Article  ADS  Google Scholar 

  46. Disdier, L., Garconnet, J.P., Malka, G., Miquel, J.L.: Fast neutronemission from a high-energy ion beam produced by a highintensitysubpicosecond laser pulse. Phys. Rev. Lett. 82(7),1454–1457 (1999). DOI 10.1103/PhysRevLett.82.1454. URL http://link.aps.org/abstract/PRL/v82/p1454

    Google Scholar 

  47. Drake, R.P.: High-Energy-Density Physics. Springer, Berlin, Heidelberg(2006)

    Google Scholar 

  48. Drake, R.P., Leibrandt, D.R., Harding, E.C., et al.: Nonlinear mixing behaviorof the three-dimensional Rayleigh-Taylor instability at a decelerating interface. Phys. Plasmas 11(5),2829–2837 (2004). DOI 10.1063/1.1651492

    Article  ADS  Google Scholar 

  49. Dubin, D.H.E., O’Nail, T.M.: Trapped nonneutral plasmas, liquids and crystals(the thermal equilibrium states). Rev. Mod. Phys. 71, 87 (1999)

    Article  ADS  Google Scholar 

  50. Edens, A.D., Ditmire, T., Hansen, J.F., et al.: Studies of laser-driven radiativeblast waves. Astrophys. Space Sci. 298(1-2),39–47 (2005). DOI 10.1007/s10509-005-3910-8

    Article  MATH  ADS  Google Scholar 

  51. Efremov, Y.N.: Zvezdnye ostrova (Star Islands). Vek 2, Fryazino (2005)

    Google Scholar 

  52. Efremov, Y.N.: Spiral’naja struktura nashej galaktiki (Spiral structure of ourgalaxy). In: V.G. Surdin (ed.) Astronomiya: Vek XXI (Astronomy: XXIstCentury),p. 313. Vek 2, Fryazino (2007)

    Google Scholar 

  53. Esirkepov, T., Yamagiwa, M., Tajima, T.: Laser ion-acceleration scalinglaws seen in multiparametric particle-in-cell simulations. Phys. Rev. Lett. 96(10),105001 (2006). DOI 10.1103/PhysRevLett.96.105001. URL http://link.aps.org/abstract/PRL/v96/e105001

    Google Scholar 

  54. European Southern Observatory: (1999). URL http://www.eso.org/public/outreach/press-rel/pr-1999/phot-29

  55. Faber, S.M., Gallagher, J.S.: Exploding neutron stars in close binaries. Annu.Rev. Astron. Astrophys. 17, 135–187 (1979)

    Article  ADS  Google Scholar 

  56. Faber, T.E.: Fluid Dynamics for Physicists. Cambridge University Press, Cambridge (1977)

    Google Scholar 

  57. Fabrika, S.: The jets and and supercritical accretion disk in SS433. Astrophys. Space Phys. Rev. 12, 1 (2004)

    ADS  Google Scholar 

  58. Falize, E., Bouquet, S., Michaut, C.: Radiation hydrodynamicsscaling laws in high energy density physics and laboratory astrophysics. J. Phys.: Conf. Ser. 112(4),042016 (4 pp) (2008). URL http://stacks.iop.org/1742-6596/112/042016

    Google Scholar 

  59. Fermi, E.: On the origin of the cosmic radiation. Phys. Rev. 75(8),1169–1174 (1949). DOI 10.1103/PhysRev.75.1169. URL http://link.aps.org/abstract/PR/v75/p1169

    Google Scholar 

  60. Filinov, V.S., Bonitz,M., Levashov, P., et al.: Plasma phase transition in densehydrogen and electron–hole plasmas. J. Phys. A 36(22),6069–6076 (2003). DOI 10.1088/0305-4470/36/22/332

    Article  MATH  ADS  Google Scholar 

  61. Filinov, V.S., Levashov, P.R., Bonitz, M., Fortov, V.E.: Calculation of theshock Hugoniot of deuterium atpressures above 1 Mbar by the path-integralMonte Carlo method. Plasma Phys. Rep. 31(8),700–704 (2005). DOI 10.1134/1.2031631

    Article  ADS  Google Scholar 

  62. Fortov, V., Iakubov, I., Khrapak, A.: Physics of Strongly Coupled Plasma. Oxford University Press, Oxford (2006)

    Book  MATH  Google Scholar 

  63. Fortov, V.E. (ed.): Entsiklopediya nizkotemperaturnoi plazmy (Encyclopediaof Low-Temperature Plasma). Nauka, Moscow (2000)

    Google Scholar 

  64. Fortov, V.E.: Intense Shock Waves and Extreme States of Matter. Bukos, Moscow (2005)

    Google Scholar 

  65. Fortov, V.E. (ed.): Explosive-Driven Generators of Powerful Electrical CurrentPulses. Cambridge International Science, Cambridge (2007)

    Google Scholar 

  66. Fortov, V.E.: Intense shock waves and extreme states of matter. Phys.Usp. 50(4),333 (2007). DOI 10.1070/PU2007v050n04ABEH006234. URL http://ufn.ru/en/articles/2007/4/c/

    Google Scholar 

  67. Fortov, V.E., Gnedin, Y.N., Ivanov, M.F., et al.: Collision of cometShoemaker–Levy 9 with Jupiter: what did we see. Phys. Usp. 39(4),363 (1996). DOI 10.1070/PU1996v039n04ABEH000142. URL http://ufn.ru/en/articles/1996/4/c/

    Google Scholar 

  68. Fortov, V.E., Ilkaev, R.I., Arinin, V.A., et al.: Phase transitionin a strongly nonideal deuterium plasma generated by quasiisentropicalcompression at megabar pressures. Phys. Rev. Lett. 99(18),185001 (2007). DOI 10.1103/PhysRevLett.99.185001. URL http://link.aps.org/abstract/PRL/v99/e185001

    Google Scholar 

  69. Fortov, V.E., Ivlev, A.V., Khrapak, S.A., et al.: Complex (dusty) plasma: currentstatus, open issues, perspectives. Phys. Rep. 421(1),1–103 (2005). DOI 10.1016/j.physrep.2005.08.007

    Article  MathSciNet  ADS  Google Scholar 

  70. Fortov, V.E., Khrapak, A.G., Khrapak, S.A., et al.: Dusty plasmas. Phys.Usp. 47(5),447 (2004). DOI 10.1070/PU2004v047n05ABEH001689. URL http://ufn.ru/en/articles/2004/5/b/

  71. Fortov, V.E., Khrapak, A.G., Yakubov, I.T.: Fizika neideal’noi plazmy(Physics of Nonideal Plasma). Fizmatlit, Moscow (2004)

    Google Scholar 

  72. Fortov, V.E., Ternovoi, V.Y., Zhernokletov, M.V., et al.: Pressure-producedionization of nonideal plasma in a megabar range of dynamic pressures. JETP 97(2),259–278 (2003). DOI 10.1134/1.1608993

    Article  ADS  Google Scholar 

  73. Gehrels, N., Piro, L., Leonard, P.J.T.: The brightest in the universe – gammaraybursts herald the birth of a black hole. Sci. Am. 287(6),84–91 (2002)

    Article  Google Scholar 

  74. Gelliot, T.: Understanding the evolution of giant planets: importance of equationof state (2007). Presented at the International Workshop on Warm Dense Matter, University of Rostock, Germany

    Google Scholar 

  75. Ginzburg, V.L.: The Physics of a Lifetime: Reflections on the Problems andPersonalities of 20th Century Physics. Springer, Berlin, Heidelberg (2001)

    Google Scholar 

  76. Ginzburg, V.L.: On superconductivity and superfluidity (what I have andhave not managed to do), as well as on the “physical minimum” atthe beginning of the XXI century December 8, 2003). Phys. Usp. 47(11),1155 (2004). DOI 10.1070/PU2004v047n11ABEH001825. URL http://ufn.ru/en/articles/2004/11/d/

  77. Glendenning, N.K.: Compact Stars: Nuclear Physics, Particle Physics, andGeneral Relativity, 2nd edn. Springer, New York (2000)

    Google Scholar 

  78. Grabovskii, E.V., Vorob’ev, O.Y., Dyabilin, K.S., et al.: Excitation of intenseshock waves by soft x radiation from a Z-pinch plasma. JETP Lett. 60(1),1(1994)

    ADS  Google Scholar 

  79. Greisen, K.: End to the cosmic-ray spectrum? Phys. Rev. Lett. 16(17),748–750 (1966). URL http://link.aps.org/abstract/PRL/v16/p748

  80. Grib, A.A.: Osnovnye predstavleniya sovremennoi kosmologii (The BasicRepresentations of Modern Cosmology). FizMatLit, Moscow (2008)

    Google Scholar 

  81. Grishchuk, L.P.: Relic gravitational waves and their detection. In: C. L¨ammerzahl, C.W.F. Everitt, F.W. Hehl (eds.) Gyros, Clocks, Interferometers.. . : Testing Relativistic Gravity in Space. Lect. Notes Phys., Vol. 562,p. 167. Springer, Berlin, Heidelberg (2001). DOI 10.1007/3-540-40988-2

    Chapter  Google Scholar 

  82. Grishchuk, L.P.: Relic gravitational waves and cosmology. Phys. Usp. 48(12),1235 (2005). DOI 10.1070/PU2005v048n12ABEH005795. URL http://ufn.ru/en/articles/2005/12/i/

    Google Scholar 

  83. Gyulassy, M.: Quark gluon plasmas: Femto cosmology with A+A @ LHC.Presented at the ExtreMe Matter Institute EMMI Kick-Off Meeting & Symposium, July 16–17, 2008, GSI, Darmstadt, Germany

    Google Scholar 

  84. Haensel, P., Potekhin, A., Yakovlev, D.: Neutron Stars 1: Equation of Stateand Structure. Springer, New York (2007)

    Google Scholar 

  85. Hands, S.: The phase diagram of QCD. Contemp. Phys. 42(4),209–225 (2001). DOI 10.1080/00107510110063843. URL http://pdfserve.informaworld.com/104165_762903897_713806686.p

    Google Scholar 

  86. Hansen, J.F., Edwards, M.J., Froula, D.H., et al.: Laboratory observation ofsecondary shock formation ahead of a strongly radiative blast wave. Phys. Plasmas 13(2),022105 (2006). DOI 10.1063/1.2168157

    Article  ADS  Google Scholar 

  87. Hawke, P.S., Burgess, T.J., Duerre, D.E., et al.: Observation ofelectrical conductivity of isentropically compressed hydrogen atmegabar pressures. Phys. Rev. Lett. 41(14),994–997 (1978). URL http://link.aps.org/abstract/PRL/v41/p994

    Google Scholar 

  88. Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys. 43(3),199–220 (1975). DOI 10.1007/BF02345020

    Article  MathSciNet  ADS  Google Scholar 

  89. Hawking, S.W.: A Brief History of Time: From the Big Bang to Black Holes. Bantam Books, Toronto (1988)

    Google Scholar 

  90. Hayashida, N., Honda, K., Honda, M., et al.: Observation of a very energeticcosmic ray well beyond the predicted 2.7 K cutoff in the primaryenergy spectrum. Phys. Rev. Lett. 73(26),3491–3494 (1994). URL http://link.aps.org/abstract/PRL/v73/p3491

    Google Scholar 

  91. Hu, W., White, M.: The cosmic symphony. Sci. Am. 290(2),44–53 (2004)

    Article  Google Scholar 

  92. Ichimaru, S.: Nuclear fusion in dense plasmas. Rev. Mod. Phys. 65(2),255–299 (1993). DOI 10.1103/RevModPhys.65.255. URL http://link.aps.org/abstract/RMP/v65/p255

    Google Scholar 

  93. Imshennik, V., Nadyozhin, D.: Supernova-1987A, and the emergence of theblast wave at the surface of the compact presupernova. Sov. Astron. Lett. 14(6),449–452 (1988)

    ADS  Google Scholar 

  94. Imshennik, V.S.: Experimental possibilities for studying the neutronizationof matter in stars. Phys. At. Nucl. 58(5),823–831 (1995)

    Google Scholar 

  95. Imshennik, V.S.: Explosion mechanism in supernovae collapse. Space Sci.Rev. 74(3-4),325–334 (1995). DOI 10.1007/BF00751418

    Article  ADS  Google Scholar 

  96. Istomin, Y.N.: Electron–positron plasma generation in themagnetospheres of neutron stars. Phys. Usp. 51(8),844(2008). DOI 10.1070/PU2008v051n08ABEH006596. URL http://ufn.ru/en/articles/2008/8/g/

  97. Ivanova, L.N., Imshennik, V.S., Chechotkin, V.M.: Pulsation regime of thethermonuclear explosion of a star’s dense carbon core. Astrophys. Space Sci. 31(2),497–514 (1974). DOI 10.1007/BF00644102

    Article  ADS  Google Scholar 

  98. Jeffries, C.D., Keldysh, L.V. (eds.): Electron–Hole Droplets in Semiconductors.North-Holland, Amsterdam (1983)

    Google Scholar 

  99. Kadomtsev, B.B.: Selected Works [in Russian], vol. 1. Nauka, Moscow(2003)

    Google Scholar 

  100. Kando, M., Nakajima, K., Arinaga, M., et al.: Interaction of terawatt laserwith plasma. J. Nucl. Mater. 248(1),405–407 (1997). DOI 10.1016/S0022-3115(97)00177-3

    Article  ADS  Google Scholar 

  101. Kaplan, S.A.: The Physics of Stars. Wiley, Chichester, UK (1982). [Originalin Russian: Fizika Zvezd, Nauka, Moscow, 1970, 2nd edn.]

    Google Scholar 

  102. Kardashev, N.S., Novikov, I.D., Shatskii, A.A.: Magnetic tunnels (wormholes)in astrophysics. Astron. Rep. 50(8),601–611 (2006). DOI 10.1134/S1063772906080014

    Article  ADS  Google Scholar 

  103. Karnakov, B.M., Mur, V.D., Popov, V.S.: Contribution to the theory ofLorentzian ionization. JETP Lett. 65(5),405–411 (1997)

    Article  ADS  Google Scholar 

  104. Kifonidis, K., Plewa, T., Janka, H.T., M¨uller, E.: Nucleosynthesis and clumpformation in a core-collapse supernova. Astrophys. J. Lett. 531, L123L126(2000). DOI 10.1086/312541

    Article  Google Scholar 

  105. Kirzhnits, D.A.: Extremal states of matter (ultrahigh pressuresand temperatures). Sov. Phys. – Usp. 14(4),512–523(1972). DOI 10.1070/PU1972v014n04ABEH004734. URL http://stacks.iop.org/0038-5670/14/512

  106. Kirzhnits, D.A.: Lektsii po fizike (Lectures on Physics). Nauka, Moscow(2006)

    Google Scholar 

  107. Klumov, B.A., Kondaurov, V.I., Konyukhov, A.V., et al.: Collision ofcomet Shoemaker–Levi 9 with Jupiter: what shall we see? Phys. Usp. 37(6),577 (1994). DOI 10.1070/PU1994v037n06ABEH000027. URL http://ufn.ru/en/articles/1994/6/c/

    Google Scholar 

  108. Knudson, M.D., Hanson, D.L., Bailey, J.E., et al.: Equation of statemeasurements in liquid deuterium to 70 GPa. Phys. Rev. Lett. 87(22),225501 (2001). DOI 10.1103/PhysRevLett.87.225501. URL http://link.aps.org/abstract/PRL/v87/e225501

    Google Scholar 

  109. Kocharov, G.E.: Termojadernyj kotel v nedrah solnca i problema solnechnyhnejtrino (Thermonuclear copper in the center of the sun and the problem ofsolar neutrinos). In: V.N. Soifer (ed.) Sovremennoe Estestvoznanie. Entsiklopediya(Modern Natural Science. Encyclopedia),vol. 4, p. 28. Magistr-Press, Moscow (2000)

    Google Scholar 

  110. Kodama, R., Norreys, P.A., Mima, K., et al.: Fast heating of ultrahigh-densityplasma as a step towards laser fusion ignition. Nature 412(6849),798–802(2001). DOI 10.1038/35090525

    Article  ADS  Google Scholar 

  111. Kodama, R., Tanaka, K.A., Sentoku, Y., et al.: Observation of ultrahigh gradientelectron acceleration by a self-modulated intense short laser pulse. Phys. Rev. Lett. 84(4),674–677 (2000). DOI 10.1103/Phys RevLett.84.674. URL http://link.aps.org/abstract/PRL/v84/p674

    Google Scholar 

  112. Koester, D.: White dwarfs: Recent developments. Astron. Astrophys. Rev. 11(1),33–66 (2007). DOI 10.1007/s001590100015

    Article  ADS  Google Scholar 

  113. Kouveliotou, C., Duncan, R.C., Thompson, C.: Intensely magnetic neutronstars alter the quantum physics of their surroundings. Sci. Am. 288(2),35(2003)

    Article  Google Scholar 

  114. Krauss, L.M., Scherrer, R.J.: The end of cosmology? Sci. Am. 298(3),46–53(2008)

    Article  MathSciNet  Google Scholar 

  115. Kruer, W.L.: The Physics of Laser Plasma Interactions. Addison-Wesley,Reading, MA (1988)

    Google Scholar 

  116. Lada, C.J.: Cold outflows, energetic winds, and enigmatic jets around youngstellar objects. Annu. Rev. Astron. Astrophys. 23, 267–317 (1985). DOI 10.1146/annurev.aa.23.090185.001411

    Article  ADS  Google Scholar 

  117. Leemans,W.P., van Tilborg, J., Faure, J., et al.: Terahertz radiation from laseraccelerated electron bunches. Phys. Plasmas 11(5),2899–2906 (2004). DOI 10.1063/1.1652834

    Article  ADS  Google Scholar 

  118. Levin, A.: Kosmicheskie bomby (Space bombs). Populyarnaya mehanika(Popular Mechanics) 8(58),38 (2007)

    Google Scholar 

  119. Liang, E.P., Wilks, S.C., Tabak, M.: Pair production by ultraintense lasers. Phys. Rev. Lett. 81(22),4887–4890 (1998). DOI 10.1103/PhysRevLett.81.4887. URL http://link.aps.org/abstract/PRL/v81/p4887

    Google Scholar 

  120. Lifshits, E.M.: Gravitational stabilities of the expanding world. JETP 16, 587(1946)

    Google Scholar 

  121. Lindl, J.D.: Inertial Confinement Fusion. Springer, New York (1998)

    Google Scholar 

  122. Lobo, F.S.N.: Phantom energy traversable wormholes. Phys. Rev.D 71(8),084011 (2005). DOI 10.1103/PhysRevD.71.084011. URL http://link.aps.org/abstract/PRD/v71/e084011

    Google Scholar 

  123. Lukash, V.N., Rubakov, V.A.: Dark energy: Myths and reality. Phys. Usp. 51(3),283 (2008). DOI 10.1070/PU2008v051n03ABEH006567. URL http://ufn.ru/en/articles/2008/3/d/

  124. Lyutikov, M.: Magnetar giant flares and afterglows as relativistic magnetizedexplosions. Month. Notices R. Astron. Soc. 367(4),1594–1602 (2006). DOI 10.1111/j.1365-2966.2006.10069.x

    Article  ADS  Google Scholar 

  125. Mackinnon, A.J., Borghesi, M., Hatchett, S., et al.: Effect of plasma scalelength on multi-MeV proton production by intense laser pulses. Phys. Rev.Lett. 86(9),1769–1772 (2001). DOI 10.1103/PhysRevLett.86.1769. URL http://link.aps.org/abstract/PRL/v86/p1769

    Google Scholar 

  126. Maksimchuk, A., Flippo, K., Krause, H., et al.: Plasma phase transition indense hydrogen and electron–hole plasmas. Plasma Phys. Rep. 30(6),473–495 (2004). DOI 10.1134/1.1768582

    Article  ADS  Google Scholar 

  127. Maksimchuk, A., Gu, S., Flippo, K., et al.: Forward ion accelerationin thin films driven by a high-intensity laser. Phys. Rev. Lett. 84(18),4108–4111 (2000). DOI 10.1103/PhysRevLett.84.4108. URL http://link.aps.org/abstract/PRL/v84/p4108

    Google Scholar 

  128. Mangles, S.P.D., Murphy, C.D., Najmudin, Z., et al.: Monoenergetic beamsof relativistic electrons from intense laser–plasma interactions. Nature 431(7008),535–538 (2004). DOI 10.1038/nature02939

    Article  ADS  Google Scholar 

  129. Mason, R.J., Tabak, M.: Magnetic field generation in highintensity-laser–matter interactions. Phys. Rev. Lett. 80(3),524–527 (1998). DOI 10.1103/PhysRevLett.80.524. URL http://link.aps.org/abstract/PRL/v80/p524

    Google Scholar 

  130. McCray, R.: Supernova 1987A revisited. Annu. Rev. Astron. Astrophys. 31,175–216 (1993). DOI 10.1146/annurev.aa.31.090193.001135

    Article  ADS  Google Scholar 

  131. Mesyats, G.A.: Impul’snaya energetika i elektronika (Pulse Power and Electronics).Nauka, Moscow (2004)

    Google Scholar 

  132. Meszaros, P., Rees, M.J.: Relativistic fireballs and their impact on externalmatter – Models for cosmological gamma-ray bursts. Astrophys. J. 405, 278–284 (1991)

    Article  ADS  Google Scholar 

  133. Mezzacappa, A.: Ascertaining the core collapse supernova mechanism:The state of the art and the road ahead. Annu. Rev. Nucl. Part. Sci. 55(1),467–515 (2005). DOI 10.1146/annurev.nucl.55.090704.151608. URL http://arjournals.annualreviews.org/doi/abs/10.1146/annurev.n

  134. Michaut, C., Falize, E., Cavet, C., et al.: Link between laboratory and astrophysicalradiative shocks. J. Phys.: Conf. Ser. 112(4),042013 (4 pp) (2008).URL http://stacks.iop.org/1742-6596/112/042013

    Google Scholar 

  135. Michel, F.C.: Theory of Neutron StarMagnetospheres. University of ChicagoPress, Chicago (1991)

    Google Scholar 

  136. Mihalas, D.: Stellar Atmospheres, 2nd edn. W.H. Freeman and Co., SanFrancisco (1978)

    Google Scholar 

  137. Miller, S., Tennyson, J., Jones, H.R.A., Longmore, A.J.: Computation of frequenciesand linestrengths for triatomic molecules of astronomical interest. In: U.G. Jorgensen (ed.) Molecules in the Stellar Environment. Lecture Notesin Physics, Vol. 428, pp. 296–309. Springer, Berlin, Heidelberg (1994). DOI 10.1007/3-540-57747-5\_52

    Chapter  Google Scholar 

  138. Mima, K., Ohsuga, T., Takabe, H., et al.: Wakeless triple-soliton accelerator. Phys. Rev. Lett. 57(12),1421–1424 (1986). URL http://link.aps.org/abstract/PRL/v57/p1421

    Google Scholar 

  139. Mourou, G.A., Tajima, T., Bulanov, S.V.: Optics in the relativistic regime. Rev. Mod. Phys. 78(2),1804–1816 (2006). DOI 10.1103/RevModPhys.78.309. URL http://link.aps.org/abstract/RMP/v78/p309

    Google Scholar 

  140. Murray, C.A., Wenk, R.A.: Observation of order–disorder transitions andparticle trajectories in a model one-component plasma: time resolved microscopyof colloidal spheres. In: H.M. Van Horn, S. Ichimaru (eds.) StronglyCoupled Plasma Physics, p. 367. University of Rochester Press, Rochester, NY (1993)

    Google Scholar 

  141. Nadyozhin, D.K., Yudin, A.V.: The influence of Coulomb interaction on theequation of state under nuclear statistical equilibrium conditions. Astron.Lett. 31(4),271–279 (2005). DOI 10.1134/1.1896071

    Article  ADS  Google Scholar 

  142. Nagano, M., Watson, A.A.: Observations and implications ofthe ultrahigh-energy cosmic rays. Rev. Mod. Phys. 72(3),689–732 (2000). DOI 10.1103/RevModPhys.72.689. URL http://link.aps.org/abstract/RMP/v72/p689

    Google Scholar 

  143. NASA: HubbleSite. URL http://hubblesite.org

  144. NASA, Jet Propulsion Laboratory: (2005). URL http://photojournal.jpl.nasa.gov/catalog/PIA03239

  145. National Research Council: Frontiers in High Energy Density Physics. NationalAcademies Press, Washington, DC (2003)

    Google Scholar 

  146. Nellis, W.J.: Shock compression of hydrogen and other small molecules.In: G.L. Chiarotti, R.J. Hemley, M. Bernasconi, L. Ulivi (eds.) High PressurePhenomena, Proceedings of the International School of Physics “EnricoFermi” Course CXLVII, p. 607. IOS Press, Amsterdam (2002)

    Google Scholar 

  147. Nellis, W.J.: Dynamic compression of materials: metallization of fluid hydrogenat high pressures. Rep. Prog. Phys. 69(5),1479–1580 (2006). DOI 10.1088/0034-4885/69/5/R05

    Article  ADS  Google Scholar 

  148. Nicola¨ı, P., Stenz, C., Kasperczuk, A., et al.: Studies of supersonic, radiativeplasma jet interaction with gases at the Prague Asterix Laser System facility. Phys. Plasmas 15(8),082701 (2008). DOI 10.1063/1.2963083. URL http://link.aip.org/link/?PHP/15/082701/1

    Google Scholar 

  149. Nishida, A.: The Earth’s dynamic magnetotail. Space Sci. Rev. 91(3-4),507–577 (2000). DOI 10.1023/A:1005223124330

    Article  ADS  Google Scholar 

  150. Novikov, I.D.: “Big Bang” echo (cosmic microwave backgroundobservations). Phys. Usp. 44(8),817 (2001). DOI 10.1070/PU2001v044n08ABEH000983. URL http://ufn.ru/en/articles/2001/8/h/

  151. Okun’, L.B.: Leptony i kvarki, 2nd edn. Nauka, Moscow (1990). [EnglishTransl.: Leptons and Quarks. North-Holland, Amsterdam (1982)]

    Google Scholar 

  152. Olinto, A.V.: Ultra high energy cosmic rays: the theoretical challenge. Phys.Rep. 333–334, 329–348 (2000). DOI 10.1016/S0370-1573(00)00028-4

    Article  Google Scholar 

  153. Olling, R.P., Merrifield, M.R.: Two measures of the shape of the dark halo ofthe MilkyWay. Month. Notices Royal Astron. Soc. 311(2),361–369 (2000). DOI {10.1046/j.1365-8711.2000.03053.x}

    Article  ADS  Google Scholar 

  154. O¨ pik, E.J.: Stellar associations and supernovae. Irish Astron. J. 2(8),219–233(1953)

    ADS  Google Scholar 

  155. Page, D., Applegate, J.H.: The cooling of neutron stars by the direct Urcaprocess. Astrophys. J. 394, L17–L20 (1992)

    Article  ADS  Google Scholar 

  156. Palmer, D.M., Barthelmy, S., Gehrels, N., et al.: A giant gamma-ray flarefrom the magnetar SGR 1806-20. Nature 434(7037),1107–1109 (2005). DOI {10.1038/nature03525}

    Article  ADS  Google Scholar 

  157. Panasyuk, M.I.: Stranniki vselennoj ili jeho Bol’shogo Vzryva (Wanderers ofthe Universe or a Big Bang Echo). Vek 2, Fryazino (2005)

    Google Scholar 

  158. Parker, E.N.: Dynamics of the interplanetary gas and magnetic fields. Astrophys.J. 128, 664 (1958)

    Article  ADS  Google Scholar 

  159. Partridge, H., Schwenke, D.W.: The determination of an accurateisotope dependent potential energy surface for water from extensiveab initio calculations and experimental data. J. Chem.Phys. 106(11),4618–4639 (1997). DOI 10.1063/1.473987. URL http://link.aip.org/link/?JCP/106/4618/1

  160. Pavlovski, A.I., Boriskov, G.V., et al.: Isentropic solid hydrogen compressionby ultrahigh magnetic field pressure in megabar range. In: C.M. Fowler, R.S. Caird, D.T. Erickson (eds.) Megagauss Technology and Pulsed PowerApplications, p. 255. Plenum, New York (1987)

    Google Scholar 

  161. Perlmutter, S., Aldering, G., Della Valle, M., et al.: Discovery of a supernovaexplosion at half the age of the Universe. Nature 391(6662),51–54 (1998). DOI {10.1038/34124}

    Article  ADS  Google Scholar 

  162. Phinney, E.S.: Black hole-driven hydromagnefic flows flyweels vs. fuel. In: A. Ferrari, A.G. Pacholczyk (eds.) Astrophysical Jets. Reidel, Dordrecht(1983)

    Google Scholar 

  163. Pieranski, P.: Colloidal crystals. Contemp. Phys. 24(1),2573 (1983). DOI 10.1080/00107518308227471

    Google Scholar 

  164. Popov, S.B., Prohomov, M.E.: Zvezdy: zhizn’ posle smerti (Stars: a life afterdeath). In: V.G. Surdin (ed.) Astronomiya: Vek XXI (Astronomy: XXIstCentury),p. 183. Vek 2, Fryazino (2007)

    Google Scholar 

  165. Popov, V.S., Karnakov, B.M., Mur, V.D.: Quasiclassical theory of atomic ionizationin electric and magnetic fields. Phys. Lett. A 229(5),306–312 (1997). DOI 10.1016/S0375-9601(97)00140-0

    Article  ADS  Google Scholar 

  166. Price, P.A., Berger, E., Reichart, D.E., et al.: GRB 011121: A massive starprogenitor (2002). ArXiv:astro-ph/0203467v1

    Google Scholar 

  167. Pukhov, A.: Strong field interaction of laser radiation. Rep. Prog. Phys. 66(1),47–101 (2003). DOI 10.1088/0034-4885/66/1/202

    Article  ADS  Google Scholar 

  168. Pukhov, A., Meyer-ter-Vehn, J.: Laser wake field acceleration: the highlynon-linear broken-wave regime. Appl. Phys. B 74(4-5),355–361 (2002). DOI 10.1007/s003400200795

    Article  ADS  Google Scholar 

  169. Quintenz, J., Sandia’s Pulsed Power Team: Pulsed power team. In: Proc. 13thInt. Conf. on High Power Particle Beams. Nagaoka, Japan (2000)

    Google Scholar 

  170. Rebolo, R., Martin, E.L., Zapatero Osorio, M.R. (eds.): Brown Dwarfs andExtrasolar Planets, Astronomical Society of the Pacific Conference Series,vol. 134. ASP, San Francisco (1998)

    Google Scholar 

  171. Remington, B.A., Arnett, D., R. Paul, D., Takabe, H.: Modeling astrophysicalphenomena in the laboratory with intense lasers. Science 284(5419),1488–1493 (1999). DOI 10.1126/science.284.5419.1488. URL http://www.sciencemag.org/cgi/content/abstract/284/5419/1488

    Google Scholar 

  172. Remington, B.A., Kane, J., Drake, R.P., et al.: Supernova hydrodynamics experimentson the Nova laser. Phys. Plasmas 4(5),1994–2003 (1997). DOI 10.1063/1.872341

    Article  ADS  Google Scholar 

  173. Richer, J., Michaud, G., Rogers, F., et al.: Radiative accelerations for evolutionarymodel calculations. Astrophys. J. 492(2, Part 1),833–842 (1998). DOI {10.1086/305054}

    Article  ADS  Google Scholar 

  174. Riordan, M., Zajc,W.A.: The first few microseconds. Sci. Am. 294(5),34A–41 (2006)

    Article  Google Scholar 

  175. Rodionova, Z.F., Surdin, V.G.: Planety solnechnoj sistemy (Planets of theSolar System). In: V.G. Surdin (ed.) Astronomiya: Vek XXI (Astronomy:XXIst Century),p. 34. Vek 2, Fryazino (2007)

    Google Scholar 

  176. Rubakov, V.A.: Large and infinite extra dimensions. Phys. Usp. 44(9),871 (2001). DOI 10.1070/PU2001v044n09ABEH001000. URL http://ufn.ru/en/articles/2001/9/a/

  177. Rubakov, V.A.: Introduction to cosmology. Proc. Sci. RTN2005(2005). URL http://pos.sissa.it/archive/conferences/019/003/RTN2005_003.p

  178. Rubakov, V.A.: Hierarchies of fundamental constants (to itemsNos 16, 17, and 27 from Ginzburg’s list). Phys. Usp. 50(4),390 (2007). DOI 10.1070/PU2007v050n04ABEH006240. URL http://ufn.ru/en/articles/2007/4/i/

    Google Scholar 

  179. Rubakov, V.A., Tinyakov, P.G.: Infrared-modified gravitiesand massive gravitons. Phys. Usp. 51(8),759(2008). DOI 10.1070/PU2008v051n08ABEH006600. URL http://ufn.ru/en/articles/2008/8/a/

  180. Rubin, S.G.: Ustroistvo nashei vselennoi (The Constitution of Our Universe).Vek 2, Fryazino (2006)

    Google Scholar 

  181. Rubin, V.: Seeing dark matter in the Andromeda Galaxy. Phys. Today 59(12),8–9 (2006). DOI 10.1063/1.2435662

    Article  ADS  Google Scholar 

  182. Rubin, V.C., Ford Jr, W.K., Krishna Kumar, C.: Stellar motions near the nucleusof M31. Astrophys. J. 181, 61–78 (1973)

    Article  ADS  Google Scholar 

  183. Russel, W.B., Saville, D.A., Schowalter, W.R.: Colloidal Dispersions. CambridgeUniversity Press, Cambridge (1989)

    Google Scholar 

  184. Ryutov, D.D., Remington, B.A., Robey, H.F., Drake, R.P.: Magnetodynamic scaling: from astrophysics to the laboratory. Phys. Plasmas 8(5),1804–1816(2001). DOI 10.1063/1.1344562

    Article  ADS  Google Scholar 

  185. Salpeter, E.E.: Nuclear reactions in the stars. I. Proton–proton chain.Phys. Rev. 88(3),547–553 (1952). DOI 10.1103/PhysRev.88.547. URL http://link.aps.org/abstract/PR/v88/p547

    Google Scholar 

  186. Samus’, N.N.: Peremennye zvezdy (Variable stars). In: V.G. Surdin (ed.) Astronomiya: Vek XXI (Astronomy: XXIst Century),p. 162. Vek 2, Fryazino(2007)

    Google Scholar 

  187. Sandage, A., Tammann, G.A., Saha, A., et al.: The Hubble constant:A summary of the Hubble Space Telescope program for the luminositycalibration of type Ia supernovae by means of Cepheids. Astrophys.J. 653(2),843–860 (2006). DOI 10.1086/508853. URL http://iopscience.iop.org/0004-637X/653/2/843

  188. Sazhin, M.V.: Kosmologija rannej vselennoj (Cosmology of the Early Universe).In: V.N. Soifer (ed.) Sovremennoe estestvoznanie. Entsiklopediya(Modern Natural Science. Encyclopedia),vol. 4, p. 253. Magistr-Press, Moscow (2000)

    Google Scholar 

  189. Schatz, T., Schramm, U., Habs, D.: Crystalline ion beams. Nature 412(6848),717–720 (2001). DOI 10.1038/35089045

    Article  ADS  Google Scholar 

  190. Schekochihin, A.A., Cowley, S.C., Dorland, W.: Interplanetary and interstellarplasma turbulence. Plasma Phys. Control. Fusion 49(5A),A195–A209(2007). DOI 10.1088/0741-3335/49/5A/S16

    Article  ADS  Google Scholar 

  191. Schertlera, K., Greinera, C., Schaffner-Bielichc, J., Thoma, M.H.: Quarkphases in neutron stars and a third family of compact stars as signaturefor phase transitions. Nucl. Phys. A 677(1–4),463–490 (2001). DOI 10.1016/S0375-9474(00)00305-5

    ADS  Google Scholar 

  192. Schramm, U., Schatz, T., Bussmann, M., Habs, D.: Cooling and heating ofcrystalline ion beams. J. Phys. B 36(3),561–571 (2003). DOI 10.1088/0953-4075/36/3/314

    Article  ADS  Google Scholar 

  193. Shapiro, S.L., Teukolsky, S.A.: Black Holes, White Dwarfs, and NeutronStars. Wiley, New York (1983)

    Book  Google Scholar 

  194. Shara, M.: When stars collide. Sci. Am. 287(5),44–51 (2002)

    Article  Google Scholar 

  195. Shashkin, A.A.: Metal–insulator transitions and the effects of electron–electron interactions in two-dimensional electron systems. Phys. Usp. 48(2),129 (2005). DOI 10.1070/PU2005v048n02ABEH001944. URL http://ufn.ru/en/articles/2005/2/b/

    Google Scholar 

  196. Shatskii, A.A., Novikov, I.D., Kardashev, N.S.: A dynamic modelof the wormhole and the Multiverse model. Phys. Usp. 51(5),457 (2008). DOI 10.1070/PU2008v051n05ABEH006581. URL http://ufn.ru/en/articles/2008/5/c/

    Google Scholar 

  197. Shevchenko, V.V.: Solnechnaja sistema (The Solar System). In: V.N. Soifer(ed.) Sovremennoe estestvoznanie. Entsiklopediya (Modern Natural Science.Encyclopedia),vol. 4, p. 125. Magistr Press, Moscow (2000)

    Google Scholar 

  198. Shevchenko, V.V.: Priroda planet (The nature of planets). In: V.G. Surdin(ed.) Astronomiya: Vek XXI (Astronomy: XXIst Century),p. 93. Vek 2,Fryazino (2007)

    Google Scholar 

  199. Shinkai, H., Hayward, S.A.: Fate of the first traversible wormhole: Black-hole collapse or inflationary expansion. Phys. Rev. D 66(4),044005 (2002). DOI 10.1103/PhysRevD.66.044005. URL http://link.aps.org/abstract/PRD/v66/e044005

  200. Spielman, R.B., Deeney, C., Chandler, G.A., et al.: Tungsten wire-array Zpinchexperiments at 200 TW and 2 MJ. Phys. Plasmas 5(5),2105–2111(1998). DOI 10.1063/1.872881

    Article  ADS  Google Scholar 

  201. Stefani, F., Gundrum, T., Gerbeth, G., et al.: Experimental evidencefor magnetorotational instability in a Taylor–Couette flow underthe influence of a helical magnetic field. Phys. Rev. Lett. 97(18),184502 (2006). DOI 10.1103/PhysRevLett.97.184502. URL http://link.aps.org/abstract/PRL/v97/e184502

    Google Scholar 

  202. Stozhkov, Y.I.: Kosmicheskie luchi (Cosmic rays). In: V.N. Soifer (ed.) Sovremennoe estestvoznanie. Entsiklopediya (Modern Natural Science. Encyclopedia),vol. 4, p. 191. Magistr-Press, Moscow (2000)

    Google Scholar 

  203. Sunyaev, R.A., Zeldovich, Y.B.: Distortions of the background radiationspectrum. Nature 223(5207),721–722 (1969). DOI 10.1038/223721a0

    Article  ADS  Google Scholar 

  204. Surdin, V.G.: Rozhdenie zvezd (Star Production). Editorial URSS, Moscow(1999)

    Google Scholar 

  205. Surdin, V.G.: Fundamental’nye vzaimodejstvija (Fundamental Interactions).In: V.G. Surdin (ed.) Astronomiya: Vek XXI (Astronomy: XXIst Century),p. 8. Vek 2, Fryazino (2007)

    Google Scholar 

  206. Surdin, V.G.: Mlechnyj put’ (The Milky Way). In: V.G. Surdin (ed.) Astronomiya:Vek XI (Astronomy: XXIst Century),p. 267. Vek 2, Fryazino(2007)

    Google Scholar 

  207. Takabe, H.: Hydrodynamic instability, integrated code, laboratory astrophysicsand astrophysics. In: H. Hora, G.H. Miley (eds.) Edward TellerLectures: Lasers and Inertial Fusion Energy, p. 313. Imperial College Press,London (2005)

    Chapter  Google Scholar 

  208. Takahashi, Y., Hillman, L.W., Tajima, T.: Relativistic lasers and highenergyastrophysics: Gamma ray bursts and highest energy acceleration.In: T. Tajima, K. Mima, H. Baldis (eds.) High-Field Science, p. 171. Kluwer/Plenum, New York (2000)

    Google Scholar 

  209. Takeda, M., Hayashida, N., Honda, K., et al.: Extension of the cosmic-ray energyspectrum beyond the predicted Greisen–Zatsepin–Kuz’min cutoff. Phys.Rev. Lett. 81(6),1163–1166 (1998). DOI 10.1103/PhysRevLett.81.1163.URL http://link.aps.org/abstract/PRL/v81/p1163

    Google Scholar 

  210. Tassoul, J.L.: Theory of Rotating Stars. Princeton University Press, Princeton, NJ (1978)

    Google Scholar 

  211. Tatarakis, M., Watts, I., Beg, F.N., et al.: Laser technology: Measuring hugemagnetic fields. Nature 415(6869),280 (2002). DOI 10.1038/415280a

    Article  ADS  Google Scholar 

  212. Trunin, R.F.: Shock compressibility of condensed materials in strongshock waves generated by underground nuclear explosions. Phys. Usp. 37(11),1123 (1994). DOI 10.1070/PU1994v037n11ABEH000055. URL http://ufn.ru/en/articles/1994/11/d/

  213. Tzortzakis, S., Mechain, G., Patalano, G., et al.: Coherent subterahertzradiation from femtosecond infrared filaments in air. Opt.Lett. 27(21),1944–1946 (2002). DOI 10.1364/OL.27.001944. URL http://www.opticsinfobase.org/abstract.cfm?URI=ol-27-21-1944

    Google Scholar 

  214. Vacca, J.R. (ed.): TheWorld’s 20 Greatest Unsolved Problems. Prentice HallPTR, Englewood Cliffs, NJ (2004)

    Google Scholar 

  215. Vainshtein, S.I., Zeldovich, Y.B., Ruzmaikin, A.A.: The Turbulent Dynamoin Astrophysics. Nauka, Moscow (1980)

    Google Scholar 

  216. Velikhov, E.P.: Stability of a plane Poiseuille flow of an ideally conductingfluid in a longitudinal magnetic field. Zh. Eksp. Teor. Fiz. 36(4),1192–1202(1959)

    Google Scholar 

  217. Velikhov, E.P.: Stability of an ideally conducting liquid flowing between rotatingcylinders in a magnetic field. Zh. Eksp. Teor. Fiz. 36(5),1398–1404(1959)

    Google Scholar 

  218. Vinci, T., Loupias, B., Koenig, M., et al.: Laboratory astrophysicsusing high energy lasers: need for 2D simulation. J. Phys.: Conf. Ser. 112(4),042012 (4 pp) (2008). URL http://stacks.iop.org/1742-6596/112/042012

  219. Vladimirov, A.S., Voloshin, N.P., Nogin, V.N., et al.: Shock compressibilityof aluminum at p >1 Gbar. JETP Lett. 39(2),82 (1984)

    ADS  Google Scholar 

  220. Wakker, B.P., Richter, P.: Our growing, breathing galaxy. Sci. Am. 290(1),38–47 (2004)

    Article  Google Scholar 

  221. Waxman, E.: Gamma-ray bursts and collisionless shocks. Plasma Phys. Control.Fusion 48(12B),B137–B151 (2006). DOI 10.1088/0741-3335/48/12B/S14

    Article  Google Scholar 

  222. Weiler, T.J.: Cosmic-ray neutrino annihilation on relic neutrinos revisited: a mechanism for generating air showers above the Greisen–Zatsepin–Kuzmincutoff. Astropart. Phys. 11(3),303–316 (1999)

    Article  ADS  Google Scholar 

  223. Willingale, L., Mangles, S.P., Nilson, P.M., et al.: Collimated multi-MeV ionbeams from high-intensity laser interactions with underdense plasma. Phys.Rev. Lett. 96(24),245002 (2006). DOI 10.1103/PhysRevLett.96.245002.URL http://link.aps.org/abstract/PRL/v96/e245002

    Google Scholar 

  224. Woolsey, N.C., Ash, A.D., Cortois, C., et al.: Collisionless plasma astrophysicssimulation experiments using lasers. AIP Conf. Proc. 827, 365–375(2006)

    Article  ADS  Google Scholar 

  225. XFEL Project Group at DESY: The European X-ray laser project XFEL.URL http://xfel.desy.de/

  226. Yakovlev, D.G., Levenfish, K.P., Shibanov, Y.A.: Cooling of neutronstars and superfluidity in their cores. Phys. Usp. 42(8),737 (1999). DOI 10.1070/pu1999v042n08ABEH000556. URL http://ufn.ru/en/articles/1999/8/a/

    Google Scholar 

  227. Zasov, A.V., Postnov, K.A.: Obshchaya astrofizika (General Astrophysics).Vek 2, Fryazino (2006)

    Google Scholar 

  228. Zasov, A.V., Surdin, V.G.: Raznoobrazie galaktik (A variety of galaxies). In: V.G. Surdin (ed.) Astronomiya: Vek XXI (Astronomy: XXIst Century),p.329. Vek 2, Fryazino (2007)

    Google Scholar 

  229. Zatsepin, G.T., Kusmin, V.A.: Top boundary of cosmic ray spectrum. JETP Lett. 4(3),78 (1966)

    ADS  Google Scholar 

  230. Zel’dovich, Y.B., Levich, E.V., Syunyaev, R.A.: Stimulated Compton interaction between Maxwellian electrons and spectrally narrow radiation (in Russian). Zh. Eksp. Teor. Fiz. 62(4),1392–1408 (1972)

    ADS  Google Scholar 

  231. Zel’dovich, Y.B., Novikov, I.D.: Relativistic Astrophysics (in Russian). Nauka, Moscow (1967). [English Transl.: Relativistic Astrophysics. Universityof Chicago Press, Chicago (1971)]

    Google Scholar 

  232. Zel’dovich, Y.B., Raizer, Y.P.: Fizika udarnykh voln i vysokotemperaturnykhgidrodinamicheskikh yavlenii, 2nd edn. Nauka, Moscow (1966). [EnglishTransl.: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena.Dover, Mineola, NY (2002)]

    Google Scholar 

  233. Zelenyi, L.M.: Private communication (2007)

    Google Scholar 

  234. Zelenyi, L.M., Verigin, M.I., Zakharov, A.V., et al.: The heliosphere and theinteraction of the terrestrial planets with the solar wind. Phys. Usp. 48(6),615 (2005). URL http://ufn.ru/en/articles/2005/6/i/

  235. Zubko, V., Dwek, E., Arendt, R.G.: Interstellar dust models consistent withextinction, emission, and abundance constraints. Astrophys. J. Suppl. Ser. 152(2),211249 (2004). DOI 10.1086/382351

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir E. Fortov .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fortov, V.E. (2011). Astrophysical Aspects of High Energy Densities. In: Extreme States of Matter. The Frontiers Collection. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16464-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16464-4_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16463-7

  • Online ISBN: 978-3-642-16464-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics