Skip to main content

Technical Applications of the Physics of High Energy Densities

  • Chapter
  • First Online:
Extreme States of Matter

Part of the book series: The Frontiers Collection ((FRONTCOLL))

  • 1369 Accesses

Abstract

The unique possibilities of the physics of extreme states of matter became quite obvious just after the successful experiments (Fig. 0.1) of David [1]conducted nearly three thousand years ago. Since that time the range of application in this field has continued to expand, steadily spreading higher up the scale of pressure and temperature, and has involved ever wider spheres of human activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bible. Old Testament, 1 Samuel, 17:34, 40, 43, 48–51

    Google Scholar 

  2. Andreev, N.E., Chizhonkov, E.V., Frolov, A.A., Gorbunov, L.M.: On laserwakefield acceleration in plasma channels. Nucl. Instrum. Methods Phys.Res. A 410(3), 469–476 (2002). DOI 10.1016/S0168-9002(98)00181-8

    Google Scholar 

  3. Andreev, N.E., Cros, B., Gorbunov, L.M., et al.: Laser wakefield structure ina plasma column created in capillary tubes. Phys. Plasmas 9(9), 3999–4009 (2002). DOI 10.1063/1.1497165

    Article  ADS  Google Scholar 

  4. Andreev, N.E., Gorbunov, L.M.: Laser-plasma acceleration of electrons. Phys. Usp. 42(1), 49 (1999). DOI 10.1070/PU1999v042n01ABEH000447.URL http://ufn.ru/en/articles/1999/1/f/

    Google Scholar 

  5. Andreev, N.E., Gorbunov, L.M., Kirsanov, V.I., et al.: Structure of the wakefield in plasma channels. Phys. Plasmas 4(4), 1145–1153 (1997). DOI 10.1063/1.872186

    Article  ADS  Google Scholar 

  6. Andreev, N.E., Gorbunov, L.M., Kirsanov, V.I., et al.: Resonant excitation ofwakefields by a laser-pulse in a plasma. JETP Lett. 55(10), 571–576 (1992)

    ADS  Google Scholar 

  7. Andreev, N.E., Gorbunov, L.M., Kirsanov, V.I., et al.: The theory of laserself-resonant wake field excitation. Phys. Scr. 49(1), 101–109 (1994). URL http://stacks.iop.org/1402-4896/49/101

    Google Scholar 

  8. Andreev, N.E., Gorbunov, L.M., Kirsanov, V.I., Sakharov, A.S.: Selfmodulationof high-intensity laser pulses in underlense plasmas and plasmachannels. AIP Conf. Proc. 396(1), 61–74 (1997). DOI 10.1063/1.52974.URL http://link.aip.org/link/?APC/396/61/1

  9. Andreev, N.E., Kirsanov, V.I., Gorbunov, L.M.: Stimulated processes andself-modulation of a short intense laser pulse in the laser wake-field accelerator. Phys. Plasmas 2(6), 2573–2582 (1995). DOI 10.1063/1.871219

    Article  ADS  Google Scholar 

  10. Andreev, N.E., Kirsanov, V.I., Sakharov, A.S., et al.: On the phase velocity ofplasma waves in a self-modulated laser wake-field accelerator. Phys. Plasmas 3(8), 3121–3128 (1996). DOI 10.1063/1.871659

    Article  ADS  Google Scholar 

  11. Andreev, N.E., Nishida, Y., Yugami, N.: Propagation of short intenselaser pulses in gas-filled capillaries. Phys. Rev. E Bold>65(5), 056407 (2002). DOI 10.1103/PhysRevE.65.056407. URL http://link.aps.org/abstract/PRE/v65/e056407

  12. Antonsen Jr., T.M., Mora, P.: Self-focusing and Raman scattering of laserpulses in tenuous plasmas.Phys. Rev. Lett. 69(15), 2204–2207 (1992). URL http://link.aps.org/abstract/PRL/v69/p2204

    Google Scholar 

  13. Antonsen Jr., T.M., Mora, P.: Self-focusing and Raman scattering of laserpulses in tenuous plasmas. Phys. Fluids B 5(5), 1440–1452 (1993). DOI 10.1063/1.860884. URL http://dx.DOI.org/10.1063/1.860884

  14. Antonsen Jr., T.M., Palastro, J., Milchberg, H.M.: Excitation of terahertz radiationby laser pulses in nonuniform plasma channels. Phys. Plasmas 14(3), 033107 (2007). DOI 10.1063/1.2715864

    Article  ADS  Google Scholar 

  15. Atzeni, S., Meyer-ter-Vehn, J.: The Physics of Inertial Fusion. Oxford UniversityPress, Oxford (2004)

    Book  Google Scholar 

  16. Atzeni, S., Temporal, M., Honrubia, J.J.: A first analysis of fast ignition ofprecompressed ICF fuel by laser-accelerated protons. Nucl. Fusion 42(3), L1–L4 (2002). URL http://stacks.iop.org/0029-5515/42/L1

  17. Bakhmetjev, I.E., Fertman, A.D., Golubev, A.A., et al.: Research into theadvanced experimental methods for precision ion stopping range measurementsin matter. Laser Part. Beams 21(1), 1–6 (2003). DOI 10.1017/S0263034602211015

    Article  ADS  Google Scholar 

  18. Bakunov, M.I., Bodrov, S.B., Maslov, A.V., Sergeev, A.M.:Two-dimensional theory of Cherenkov radiation from shortlaser pulses in a magnetized plasma. Phys. Rev. E Bold>70(1), 016401 (2004). DOI 10.1103/PhysRevE.70.016401. URL http://link.aps.org/abstract/PRE/v70/e016401

    Google Scholar 

  19. Bamber, C., Boege, S.J., Koffas, T., et al.: Studies of nonlinear QED incollisions of 46.6 GeV electrons with intense laser pulses. Phys. Rev.D 60(9), 092004 (1999). DOI 10.1103/PhysRevD.60.092004. URLhttp://link.aps.org/abstract/PRD/v60/e092004

    Google Scholar 

  20. Belyaev, V.S., Krainov, V.P., Lisitsa, V.S., Matafonov, A.P.: Generation offast charged particles and superstrong magnetic fields in the interactionof ultrashort high-intensity laser pulses with solid targets. Phys. Usp.51(8), 793 (2008). DOI 10.1070/PU2008v051n08ABEH006541. URL http://ufn.ru/en/articles/2008/8/b/

    Google Scholar 

  21. Berezhiani, V.I., Murusidze, I.G.: e+e- – Pair production by a focused laserpulse in vacuum. Phys. Lett. A 148(6–7), 338–340 (1990). DOI 10.1016/0375-9601(90)90813-4

    Article  ADS  Google Scholar 

  22. Bulanov, S.V., Kirsanov, V.I., Sakharov, A.S.: Excitation of ultrarelativisticplasma waves by pulse of electromagnetic radiation. JETP Lett. 50(4), 198(1991)

    ADS  Google Scholar 

  23. Bychenkov, V.Y., Rozmus, W., Maksimchuk, A., et al.: Fast ignitor conceptwith light ions. Plasma Phys. Rep. 27(12), 1017–1020 (2001). DOI 10.1134/1.1426135

    Article  ADS  Google Scholar 

  24. Bystrov, A.M., Vvedenskii, N.V., Gildenburg, V.B.: Generation of terahertzradiation upon the optical breakdown of a gas. JETP Lett. 82(12), 753–757(2005)

    Article  ADS  Google Scholar 

  25. Carr, G.L., Martin, M.C., McKinney, W.R., et al.: High-power terahertz radiationfrom relativistic electrons. Nature 420(6912), 153–156 (2002). DOI 10.1038/nature01175

    Article  ADS  Google Scholar 

  26. Carr, G.L., Martin, M.C., McKinney, W.R., et al.: Very high power THz radiationat Jefferson Lab. Phys. Med. Biol. 47(21), 3761–3764 (2002). DOI 10.1088/0031-9155/47/21/313

    Article  Google Scholar 

  27. Cavailler, C.: Inertial fusion with the LMJ. Plasma Phys. Control. Fusion 47(12B), B389–B403 (2005). DOI 10.1088/0741-3335/47/12B/S28

    Article  Google Scholar 

  28. Chen, F.F.: Introduction to Plasma Physics and Controlled Fusion, Vol. 1, 2nd edn. Springer, New York (1984)

    Google Scholar 

  29. Clark, E.L., Krushelnick, K., Davies, J.R., et al.: Measurementsof energetic proton transport through magnetized plasma fromintense laser interactions with solids.Phys. Rev. Lett. 84(4), 670–673 (2000). DOI 10.1103/PhysRevLett.84.670. URL http://link.aps.org/abstract/PRL/v84/p670

    Google Scholar 

  30. Clark, T.R., Milchberg, H.M.: Optical mode structure of the plasma waveguide. Phys. Rev. E 61(2), 1954–1965 (2000). DOI 10.1103/PhysRevE.61.1954. URL http://link.aps.org/abstract/PRE/v61/p1954 177

    Google Scholar 

  31. Courtois, C., Couairon, A., Cros, B., et al.: Propagation of intense ultrashortlaser pulses in a plasma filled capillary tube: Simulations and experiments. Phys. Plasmas 8(7), 3445–3456 (2001). DOI 10.1063/1.1378327

    Article  ADS  Google Scholar 

  32. Cros, B., Courtois, C., Malka, G., et al.: Excitation of accelerating wakefieldsin inhomogeneous plasmas. IEEE Trans. Plasma Sci. 28(4),1071–1077(2000). DOI 10.1109/27.893291

    Article  ADS  Google Scholar 

  33. Cuneo, M.E., Vesey, R.A., Bennett, G.R., et al.: Progress in symmetric ICFcapsule implosions and wire-array Z-pinch source physics for double-pinchdrivenhohlraums. Plasma Phys. Control. Fusion 48(2), R1–R35 (2006). DOI 10.1088/0741-3335/48/2/R01

    Article  ADS  Google Scholar 

  34. Decker, C.D., Mori, W.B., Tzeng, K.C., Katsouleas, T.C.: Modeling singlefrequencylaser-plasma acceleration using particle-in-cell simulations: thephysics of beam breakup. IEEE Trans. Plasma Sci. 24(2), 379–392 (1996).DOI 10.1109/27.510002

    Article  ADS  Google Scholar 

  35. DESY: FLASH. URL http://flash.desy.de/

  36. DESY: PETRA III. URL http://petra3.desy.de/

  37. Ditmire, T., Springate, E., Tisch, J.W., et al.: Explosion of atomic clustersheated by high-intensity femtosecond laser pulses. Phys. Rev.A 57(1), 369–382 (1998). DOI 10.1103/PhysRevA.57.369. URL http://link.aps.org/abstract/PRA/v57/p369

    Google Scholar 

  38. Ditmire, T., Tisch, J.W.G., Springate, E., et al.: High-energy ions produced inexplosions of superheated atomic clusters. Nature 386(6620), 54–56 (1997).DOI 10.1038/386054a0

    Article  ADS  Google Scholar 

  39. Ditmire, T., Zweiback, J., Yanovsky, V.P., et al.: Nuclear fusion from explosionsof femtosecond laser-heated deuterium clusters. Nature 398(6727), 489–492 (1999). DOI 10.1038/19037

    Article  ADS  Google Scholar 

  40. Ditmire, T., Zweiback, J., Yanovsky, V.P., et al.: Nuclear fusion in gases ofdeuterium clusters heated with a femtosecond laser. Phys. Plasmas 7(5), 1993–1998 (2000). DOI 10.1063/1.874020

    Article  ADS  Google Scholar 

  41. Dorranian, D., Starodubtsev, M., Kawakami, H., et al.: Radiation from highintensityultrashort-laser-pulse and gas-jet magnetized plasma interaction.Phys. Rev. E 68(2), 026409 (2003). DOI 10.1103/PhysRevE.68.026409.URL http://link.aps.org/abstract/PRE/v68/e026409

  42. Douglas, D.R., Jordan, K.C., Merminga, L., et al.: Experimental investigationof multibunch, multipass beam breakup in the Jefferson Laboratoryfree electron laser upgrade driver. Phys. Rev. ST Accel. Beams 9(6), 064403 (2006). DOI 10.1103/PhysRevSTAB.9.064403. URL http://link.aps.org/abstract/PRSTAB/v9/e064403

    Google Scholar 

  43. Durfee III, C.G., Milchberg, H.M.: Light pipe for high intensitylaser pulses.Phys. Rev. Lett. 71(15), 2409–2412 (1993). URL http://link.aps.org/abstract/PRL/v71/p2409

  44. Efremov, V.P., Pikuz Jr., S.A., Faenov, A.Y., et al.: Study of the energy releaseregion of a heavy-ion flux in nanomaterials by X-ray spectroscopy ofmulticharged ions. JETP Lett. 81(8), 378 (2005)

    Article  ADS  Google Scholar 

  45. Eloy, M., Azambuja, R., Mendonca, J.T., Bingham, R.: Interaction of ultrashorthigh-intensity laser pulses with atomic clusters. Phys. Plasmas 8(3), 1084–1086 (2001). DOI 10.1063/1.1345709

    Article  ADS  Google Scholar 

  46. Esarey, E., Sprangle, P., Krall, J., Ting, A.: Overview of plasma-based acceleratorconcepts. IEEE Trans. Plasma Sci. 24(2), 252–288 (1996). DOI 10.1109/27.509991

    Article  ADS  Google Scholar 

  47. Esirkepov, T., Borghesi, M., Bulanov, S.V., et al.: Highly efficientrelativistic-ion generation in the laser-piston regime. Phys. Rev. Lett.92(17), 175003 (2004). DOI 10.1103/PhysRevLett.92.175003. URL http://link.aps.org/abstract/PRL/v92/e175003

    Google Scholar 

  48. Esirkepov, T., Yamagiwa, M., Tajima, T.: Laser ion-acceleration scalinglaws seen in multiparametric particle-in-cell simulations. Phys. Rev. Lett.96(10), 105001 (2006). DOI 10.1103/PhysRevLett.96.105001. URL http://link.aps.org/abstract/PRL/v96/e105001

    Google Scholar 

  49. Esirkepov, T.Z., Bulanov, S.V., Nishihara, K., et al.: Proposed double-layertarget for the generation of high-quality laser-accelerated ion beams. Phys.Rev. Lett. 89(17), 175003 (2002). DOI 10.1103/PhysRevLett.89.175003.URL http://link.aps.org/abstract/PRL/v89/e175003

    Google Scholar 

  50. Faure, J., Glinec, Y., Pukhov, A., et al.: A laserplasma accelerator producingmonoenergetic electron beams. Nature 431(7008), 541–544 (2004). DOI 10.1038/nature02963

    Article  ADS  Google Scholar 

  51. Fortov, V.E. (ed.): Entsiklopediya nizkotemperaturnoi plazmy (Encyclopediaof Low-Temperature Plasma). Nauka, Moscow (2000)

    Google Scholar 

  52. Fortov, V.E.: Intense Shock Waves and Extreme States of Matter. Bukos,Moscow (2005)

    Google Scholar 

  53. Fortov, V.E., Hoffmann, D.H.H., Sharkov, B.Y.: Intense ion beamsfor generating extreme states of matter. Phys. Usp. 51(2), 109(2008). DOI 10.1070/PU2008v051n02ABEH006420. URL http://ufn.ru/en/articles/2008/2/a/

  54. Fortov, V.E., Ivlev, A.V., Khrapak, S.A., et al.: Complex (dusty) plasma: Currentstatus, open issues, perspectives. Phys. Rep. 421(1), 1–103 (2005). DOI 10.1016/j.physrep.2005.08.007

    Article  MathSciNet  ADS  Google Scholar 

  55. Fourkal, E., Li, J.S., Xiong, W., et al.:Intensity modulated radiation therapyusing laser-accelerated protons: a Monte Carlo dosimetric study. Phys. Med.Biol. 48(24), 3977–4000 (2003). DOI 10.1088/0031-9155/48/24/001

    Article  Google Scholar 

  56. Fourkal, E., Shahine, B., Ding, M., et al.: Particle in cell simulationof laser-accelerated proton beams for radiation therapy. Med.Phys. 29(12), 2788–2798 (2002). DOI 10.1118/1.1521122. URL http://dx.DOI.org/10.1118/1.1521122

    Google Scholar 

  57. Frolov, A.A.: Excitation of surface waves at a plasma boundary by a shortlaser pulse. Plasma Phys. Rep. 33(3), 179–188 (2007). DOI 10.1134/S1063780X07030026

    Article  ADS  Google Scholar 

  58. Geddes, C.G.R., T´oth, C., van Tilborg, J., et al.: High-quality electron beamsfrom a laser wakefield accelerator using plasma-channel guiding. Nature431(7008), 538–541 (2004). DOI 10.1038/nature02900References 179

    Article  ADS  Google Scholar 

  59. Giorla, J., Bastian, J., Bayer, C., et al.: Target design for ignition experimentson the laser M´egajoule facility. Plasma Phys. Control. Fusion 48(12B), B75–B82 (2006). DOI 10.1088/0741-3335/48/12B/S0

    Article  Google Scholar 

  60. Golubev, S.V., Suvorov, E.V., Shalashov, A.G.: On the possibility of terahertzwave generation upon dense gas optical breakdown. JETP Lett. 79(8), 361–364 (2004)

    Article  ADS  Google Scholar 

  61. Gorbunov, L.M., Frolov, A.A.: Emission of low-frequency electromagneticwaves by a short laser pulse in stratified rarefied plasma. JETP 83(5), 967–973 (1996)

    ADS  Google Scholar 

  62. Gorbunov, L.M., Frolov, A.A.: Emission of low-frequency electromagneticwaves by a short laser pulse propagating in a plasma with density fluctuations. Plasma Phys. Rep. 26(8), 646–656 (2000). DOI 10.1134/1.1306994

    Article  ADS  Google Scholar 

  63. Gorbunov, L.M., Frolov, A.A.: Electromagnetic radiation at twice the plasmafrequency emitted from the region of interaction of two short laser pulses ina rarefied plasma. JETP 98(3), 527–537 (2004). DOI 10.1134/1.1705705

    Article  ADS  Google Scholar 

  64. Gorbunov, L.M., Frolov, A.A.: Low-frequency transition radiation from ashort laser pulse at the plasma boundary. JETP 102(6), 894–901 (2006).DOI 10.1134/S1063776106060033

    Article  ADS  Google Scholar 

  65. Gorbunov, L.M., Frolov, A.A.: On the theory of Cherenkov emission from ashort laser pulse in a magnetized plasma. Plasma Phys. Rep. 32(6), 500–513(2006). DOI 10.1134/S1063780X06060079

    Article  ADS  Google Scholar 

  66. Gorbunov, L.M., Frolov, A.A.: Transition radiation generated by a short laserpulse at a plasma–vacuum interface. Plasma Phys. Rep. 32(10), 850–865(2006). DOI 10.1134/S1063780X06100059

    Article  ADS  Google Scholar 

  67. Gorbunov, L.M., Kalmykov, S.Y., Mora, P.: Laser wakefield acceleration bypetawatt ultrashort laser pulses. Phys. Plasmas 12(3), 033101 (2005). DOI 10.1063/1.1852469

    Article  ADS  Google Scholar 

  68. Gorbunov, L.M., Kirsanov, V.I.: The excitation of plasma waves by an electromagneticwave packet. JETP 93, 509 (1987). (In Russian)

    Google Scholar 

  69. Gordienko, S., Pukhov, A.: Scalings for ultrarelativistic laser plasmas andquasimonoenergetic electrons. Phys. Plasmas 12(4), 043109 (2005). DOI 10.1063/1.1884126

    Article  ADS  Google Scholar 

  70. Hammel, B.A., National Ignition Campaign Team: The NIF ignition program:progress and planning. Plasma Phys. Control. Fusion 48(12B), B497–B506 (2006). DOI 10.1088/0741-3335/48/12B/S47

    Article  Google Scholar 

  71. Hamster, H., Sullivan, A., Gordon, S., et al.: Subpicosecond,electromagnetic pulses from intense laser-plasma interaction. Phys. Rev. Lett. 71(17), 2725–2728 (1993). URL http://link.aps.org/abstract/PRL/v71/p2725

    Google Scholar 

  72. Hegelich, B.M., Albright, B.J., Cobble, J., et al.: Laser acceleration of quasimonoenergeticMeV ion beams. Nature 439, 441–444 (2006). DOI 10.1038/nature04400

    Article  ADS  Google Scholar 

  73. Hoffmann, D.H.H., Fortov, V.E., Lomonosov, I.V., et al.: Unique capabilitiesof an intense heavy ion beam as a tool for equation-of-state studies. Phys.Plasmas 9(9), 3651–3654 (2002). DOI 10.1063/1.1498260

    Article  ADS  Google Scholar 

  74. Hogan, W.J. (ed.): Energy from Inertial Fusion. IAEA, Vienna, Austria(1995)

    Google Scholar 

  75. Hooker, S.M., Spence, D.J., Smith, R.A.: Guiding of high-intensity picosecondlaser pulses in a discharge-ablated capillary waveguide.J. Opt.Soc. Am. B 17(1), 90–98 (2000). DOI 10.1364/JOSAB.17.000090. URL http://josab.osa.org/abstract.cfm?URI=josab-17-1-90

    Google Scholar 

  76. Joshi, C.: Plasma accelerators. Sci. Am. 294(2), 40–47 (2006)

    Article  Google Scholar 

  77. Kaplan, A.E., Dubetsky, B.Y., Shkolnikov, P.L.: Shock shells inCoulomb explosions of nanoclusters.Phys. Rev. Lett. 91(14), 143401 (2003). DOI 10.1103/PhysRevLett.91.143401. URL http://link.aps.org/abstract/PRL/v91/e143401

    Google Scholar 

  78. Khazanov, E.A., Sergeev, A.M.: Petawatt laser based on optical parametricamplifiers: Their state and prospects. Phys. Usp. 51(9), 969 (2008). DOI 10.1070/PU2008v051n09ABEH006612. URL http://ufn.ru/en/articles/2008/9/h/

    Google Scholar 

  79. Kirzhnits, D.A.: Extremal states of matter (ultrahigh pressuresand temperatures). Sov. Phys. – Usp. 14(4), 512–523(1972). DOI 10.1070/PU1972v014n04ABEH004734. URL http://stacks.iop.org/0038-5670/14/512

  80. Kishimoto, Y., Masaki, T., Tajima, T.: High energy ions and nuclear fusion inlaser-cluster interaction. Phys. Plasmas 9(2), 589–601 (2002). DOI 10.1063/1.1418433

    Article  ADS  Google Scholar 

  81. Kodama, R., Norreys, P.A., Mima, K., et al.: Fast heating of ultrahigh-densityplasma as a step towards laser fusion ignition. Nature 412(6849), 798–802(2001). DOI 10.1038/35090525

    Article  ADS  Google Scholar 

  82. Konyukhov, A.V., Likhachev, A.P., Oparin, A.M., et al.: Numerical modelingof shock-wave instability in thermodynamically nonideal media. JETP 98(4), 811–819 (2004). DOI 10.1134/1.1757680

    Article  ADS  Google Scholar 

  83. Krall, J., Ting, A., Esarey, E., Sprangle, P.: Enhanced accelerationin a self-modulated-laser wake-field accelerator. Phys. Rev. E48(3), 2157–2161 (1993). DOI 10.1103/PhysRevE.48.2157. URL http://link.aps.org/abstract/PRE/v48/p2157

    Google Scholar 

  84. Kruer, W.L.: The Physics of Laser Plasma Interactions. Addison-Wesley,Reading, MA (1988)

    Google Scholar 

  85. Last, I., Schek, I., Jortner, J.: Energetics and dynamics ofCoulomb explosion of highly charged clusters. J. Chem. Phys.107(17), 6685–6692 (1997). DOI 10.1063/1.474911. URL http://link.aip.org/link/?JCP/107/6685/1

    Google Scholar 

  86. Leemans, W.P., Geddes, C.G.R., Faure, J., et al.: Observation ofterahertz emission from a laser-plasma accelerated electron bunchcrossing a plasma-vacuum boundary.Phys. Rev. Lett. 91(7), 074802 (2003). DOI 10.1103/PhysRevLett.91.074802. URL http://link.aps.org/abstract/PRL/v91/e074802

    Google Scholar 

  87. Leemans, W.P., Nagler, B., Gonsalves, A.J., et al.: GeV electron beams froma centimetre-scale accelerator. Nat. Phys. 2(10), 696–699 (2006). DOI 10.1038/nphys418

    Article  Google Scholar 

  88. Leemans,W.P., van Tilborg, J., Faure, J., et al.: Terahertz radiation from laseraccelerated electron bunches. Phys. Plasmas 11(5), 2899–2906 (2004). DOI 10.1063/1.1652834

    Article  ADS  Google Scholar 

  89. Lifschitz, A.F., Faure, J., Malka, V., Mora, P.: GeV wakefield accelerationof low energy electron bunches using petawatt lasers. Phys. Plasmas 12(9), 093104 (2005). DOI 10.1063/1.2010347

    Article  ADS  Google Scholar 

  90. Lindl, J.D.: Inertial Confinement Fusion. Springer, New York (1998)

    Google Scholar 

  91. Loborev, V.M., Pertsev, V.V., Sudakov, V.E., et al. (eds.): Fizika jadernogovzryva (The Physics of Nuclear Explosions], vol. 1. FizMatLit, Moscow(2009)

    Google Scholar 

  92. Maksimchuk, A., Flippo, K., Krause, H., et al.: Plasma phase transition indense hydrogen and electron–hole plasmas. Plasma Phys. Rep. 30(6), 473–495 (2004). DOI 10.1134/1.1768582

    Article  ADS  Google Scholar 

  93. Maksimchuk, A., Gu, S., Flippo, K., et al.: Forward ion accelerationin thin films driven by a high-intensity laser. Phys. Rev. Lett.84(18), 4108–4111 (2000). DOI 10.1103/PhysRevLett.84.4108. URL http://link.aps.org/abstract/PRL/v84/p4108

    Google Scholar 

  94. Mesyats, G.A.: Impul’snaya energetika i elektronika (Pulse Power and Electronics).Nauka, Moscow (2004)

    Google Scholar 

  95. Mesyats, G.A., Yalandin, M.I.: High-power picosecond electronics. Phys.Usp. 48(3), 211 (2005). DOI 10.1070/PU2005v048n03ABEH002113. URL http://ufn.ru/en/articles/2005/3/a/

  96. Mima, K., Fast Ignition Research Group: Present status and future prospectsof laser fusion and related high energy density plasma research. AIPConf. Proc. 740(1), 387–397 (2004). DOI 10.1063/1.1843522. URL http://link.aip.org/link/?APC/740/387/1

  97. Mintsev, V., Gryaznov, V., Kulish, M., et al.: Stopping power of proton beamin a weakly non-ideal xenon plasma. Contrib. Plasma Phys. 39(1-2), 45–48(1999). DOI 10.1002/ctpp.2150390111

    Article  Google Scholar 

  98. Mori, W.B., Decker, C.D., Hinkel, D.E., Katsouleas, T.:Raman forward scattering of short-pulse high-intensitylasers.Phys. Rev. Lett. 72(10), 1482–1485 (1994). URL http://link.aps.org/abstract/PRL/v72/p1482

    Google Scholar 

  99. Moses, E.I., Bonanno, R.E., Haynam, C.A., et al.: The National Ignition Facility:path to ignition in the laboratory. Eur. Phys. J. D 44(2), 215–218(2006). DOI 10.1140/epjd/e2006-00106-3

    Article  ADS  Google Scholar 

  100. Mourou, G.A., Tajima, T., Bulanov, S.V.: Optics in the relativistic regime. Rev. Mod. Phys. 78(2), 1804–1816 (2006). DOI 10.1103/RevModPhys.78.309. URL http://link.aps.org/abstract/RMP/v78/p309

    Google Scholar 

  101. National Research Council:Frontiers in High Energy Density Physics. NationalAcademies Press, Washington, DC (2003)182 6 Technical Applications of the Physics of High Energy Densities

    Google Scholar 

  102. Nishihara, K., Amitani, H., Murakami, M., et al.: High energy ions generatedby laser driven Coulomb explosion of cluster. Nucl. Instrum. Meth. Phys.Res. A 464(1-3), 98–102 (2001). DOI 10.1016/S0168-9002(01)00014-6

    Article  ADS  Google Scholar 

  103. Okihara, S., Esirkepov, T.Z., Nagai, K., et al.: Ion generation in a low-densityplastic foam by interaction with intense femtosecond laser pulses. Phys.Rev. E 69(2), 026401 (2004). DOI 10.1103/PhysRevE.69.026401. URL http://link.aps.org/abstract/PRE/v69/e026401

    Google Scholar 

  104. Pukhov, A.: Strong field interaction of laser radiation. Rep. Prog. Phys. 66(1), 47–101 (2003). DOI 10.1088/0034-4885/66/1/202

    Article  ADS  Google Scholar 

  105. Pukhov, A., Meyer-ter-Vehn, J.: Laser wake field acceleration:the highlynon-linear broken-wave regime. Appl. Phys. B 74(4–5), 355–361 (2002).DOI 10.1007/s003400200795

    Article  ADS  Google Scholar 

  106. Quintenz, J., Sandia’s Pulsed Power Team: Pulsed power team. In:Proc. 13thInt. Conf. on High Power Particle Beams. Nagaoka, Japan (2000)

    Google Scholar 

  107. Rosmej, O.N., Blazevic, A., Korostiy, S., et al.: Charge state and stoppingdynamics of fast heavy ions in dense matter. Phys. Rev. A 72(5), 052901 (2005). DOI 10.1103/PhysRevA.72.052901. URL http://link.aps.org/abstract/PRA/v72/e052901

    Google Scholar 

  108. Roth, M., Cowan, T.E., Key, M.H., et al.: Fast ignition by intense laseracceleratedproton beams.Phys. Rev. Lett. 86(3), 436–439 (2001). DOI 10.1103/PhysRevLett.86.436

    Article  ADS  Google Scholar 

  109. Schatz, T., Schramm, U., Habs, D.: Crystalline ion beams. Nature 412(6848), 717–720 (2001). DOI 10.1038/35089045

    Article  ADS  Google Scholar 

  110. Schramm, U., Schatz, T., Bussmann, M., Habs, D.: Cooling and heating ofcrystalline ion beams. J. Phys. B 36(3), 561–571 (2003). DOI 10.1088/0953-4075/36/3/314

    Article  ADS  Google Scholar 

  111. Schroeder, C.B., Esarey, E., van Tilborg, J., Leemans, W.P.: Theory of coherenttransition radiation generated at a plasma-vacuum interface. Phys.Rev. E 69(1), 016501 (2004). DOI 10.1103/PhysRevE.69.016501. URL http://link.aps.org/abstract/PRE/v69/e016501

  112. Shao, Y.L., Ditmire, T., Tisch, J.W.G., et al.: Multi-keV electron generationin the interaction of intense laser pulses with Xe clusters. Phys. Rev.Lett. 77(16), 3343–3346 (1996). DOI 10.1103/PhysRevLett.77.3343. URL http://link.aps.org/abstract/PRL/v77/p3343

    Google Scholar 

  113. Sharkov, B.Y. (ed.): Yadernyi sintez s inertsionnym uderzhaniem (InertialConfinement Nuclear Fusion). Fizmatlit, Moscow (2005)

    Google Scholar 

  114. Sheng, Z.M., Mima, K., Zhang, J.: Powerful terahertz emission from laserwake fields excited in inhomogeneous plasmas. Phys. Plasmas 12(12), 123103 (2005). DOI 10.1063/1.2136107

    Article  ADS  Google Scholar 

  115. Sheng, Z.M., Mima, K., Zhang, J., Sanuki, H.: Emission of electromagneticpulses from laser wakefields through linear mode conversion. Phys. Rev.Lett. 94(9), 095003 (2005). DOI 10.1103/PhysRevLett.94.095003. URL http://link.aps.org/abstract/PRL/v94/e095003

    Google Scholar 

  116. Sheng, Z.M., Wu, H.C., Li, K., Zhang, J.: Terahertz radiation from thevacuum-plasma interface driven by ultrashort intense laser pulses. Phys.References 183Rev. E 69(2), 025401 (2004). DOI 10.1103/PhysRevE.69.025401. URL http://link.aps.org/abstract/PRE/v69/e025401

  117. Shvets, G.,Wurtele, J.S., Chiou, T.C., Katsouleas, T.C.: Excitation of acceleratingwakefields in inhomogeneous plasmas.IEEE Trans.Plasma Sci. 24(2), 351–362 (1996). DOI 10.1109/27.509999

    Article  ADS  Google Scholar 

  118. Spence, D.J., Butler, A., Hooker, S.M.: Gas-filled capillary dischargewaveguides. J. Opt. Soc. Am. B 20(1), 138–151 (2003). URL http://josab.osa.org/abstract.cfm?URI=josab-20-1-138

    Google Scholar 

  119. Spence, N., Katsouleas, T., Muggli, P., et al.: Simulations of Cerenkov wakeradiation sources. Phys. Plasmas 8(11), 4995–5005 (2001). DOI 10.1063/1.1408625

    Article  ADS  Google Scholar 

  120. Spielman, R.B., Deeney, C., Chandler, G.A., et al.: Tungsten wire-array Zpinchexperiments at 200 TW and 2 MJ. Phys. Plasmas 5(5), 2105–2111(1998). DOI 10.1063/1.872881

    Article  ADS  Google Scholar 

  121. Sprangle, P., Esarey, E., Krall, J., Joyce, G.: Propagation and guiding of intenselaser pulses in plasmas.Phys. Rev. Lett. 69(15), 2200–2203 (1992).URL http://link.aps.org/abstract/PRL/v69/p2200

    Google Scholar 

  122. Sprangle, P., Esarey, E., Ting, A., Joyce, G.: Laser wakefield accelerationand relativistic optical guiding. Appl. Phys. Lett.53(22), 2146–2148 (1988). DOI 10.1063/1.100300. URL http://link.aip.org/link/?APPLAB/53/2146/1

    Google Scholar 

  123. Sprangle, P., Penano, J.R., Hafizi, B., Kapetanakos, C.A.: Ultrashort laserpulses and electromagnetic pulse generation in air and on dielectric surfaces. Phys. Rev. E 69(6), 066415 (2004). DOI 10.1103/PhysRevE.69.066415.URL http://link.aps.org/abstract/PRE/v69/e066415

  124. Tabak, M., Hammer, J., Glinsky, M.E., et al.: Ignition and high gain withultrapowerful lasers. Phys. Plasmas 1(5), 1626–1634 (1994). DOI 10.1063/1.870664

    Article  ADS  Google Scholar 

  125. Tahir, N.A., Deutsch, C., Fortov, V.E., et al.: Proposal for the studyof thermophysical properties of high-energy-density matter using currentand future heavy-ion accelerator facilities at GSI Darmstadt. Phys. Rev.Lett. 95(3), 035001 (2005). DOI 10.1103/PhysRevLett.95.035001. URL http://link.aps.org/abstract/PRL/v95/e035001

  126. Tahir, N.A., Deutsch, C., Fortov, V.E., et al.: Studies of strongly coupled plasmasusing intense heavy ion beams at the future FAIR facility:The HEDge-HOB collaboration. Contrib. Plasma Phys. 45(3–4), 229–235 (2005). DOI 10.1002/ctpp.200510025

    Article  Google Scholar 

  127. Tahir, N.A., Kain, V., Schmidt, R., et al.: The CERN Large Hadron Collideras a tool to study high-energy density matter. Phys. Rev. Lett.94(13), 135004 (2005). DOI 10.1103/PhysRevLett.94.135004. URL http://link.aps.org/abstract/PRL/v94/e135004

  128. Tajima, T.: Summary ofWorking Group 7 on “Exotic acceleration schemes”.AIP Conf. Proc. 569(1), 77–81 (2001). DOI 10.1063/1.1384337. URL http://link.aip.org/link/?APC/569/77/1

  129. Tajima, T., Dawson, J.M.: Laser electron accelerator.Phys. Rev. Lett. 43(4), 267–270 (1979). URL http://link.aps.org/abstract/{PRL}/v43/p267

    Google Scholar 

  130. van Tilborg, J., Schroeder, C.B., Esarey, E., Leemans, W.P.: Pulse shapeand spectrum of coherent diffraction-limited transition radiation from electronbeams. Laser Part. Beams 22, 415–422 (2004). DOI 10.1017/S0263034604040078

    ADS  Google Scholar 

  131. van Tilborg, J., Schroeder, C.B., Filip, C.V., et al.: Temporalcharacterization of femtosecond laser-plasma-accelerated electronbunches using terahertz radiation.Phys. Rev. Lett. 96(1), 014801 (2006). DOI 10.1103/PhysRevLett.96.014801. URL http://link.aps.org/abstract/PRL/v96/e014801

    Google Scholar 

  132. Tzortzakis, S., Mechain, G., Patalano, G., et al.: Coherent subterahertzradiation from femtosecond infrared filaments in air. Opt.Lett. 27(21), 1944–1946 (2002). DOI 10.1364/OL.27.001944. URL http://www.opticsinfobase.org/abstract.cfm?URI=ol-27-21-1944

    Google Scholar 

  133. Wang, S., Clayton, C.E., Blue, B.E., et al.: X-Ray emission frombetatron motion in a plasma wiggler.Phys. Rev. Lett. 88(13), 135004 (2002). DOI 10.1103/PhysRevLett.88.135004. URL http://link.aps.org/abstract/PRL/v88/e135004

    Google Scholar 

  134. XFEL Project Group at DESY: The European X-ray laser project XFEL.URL http://xfel.desy.de/

  135. Yampolsky, N.A., Fraiman, G.M.: Conversion of laser radiation to terahertzfrequency waves in plasma. Phys. Plasmas 13(11), 113108 (2006). DOI 10.1063/1.2372462

    Article  ADS  Google Scholar 

  136. Yoshii, J., Lai, C.H., Katsouleas, T., et al.: Radiation fromCerenkov wakes in a magnetized plasma.Phys. Rev. Lett. 79(21), 4194–4197 (1997). DOI 10.1103/PhysRevLett.79.4194. URL http://link.aps.org/abstract/PRL/v79/p4194

    Google Scholar 

  137. Yugami, N., Higashiguchi, T., Gao, H., et al.: Experimental observationof radiation from Cherenkov wakes in a magnetized plasma. Phys. Rev.Lett. 89(6), 065003 (2002). DOI 10.1103/PhysRevLett.89.065003. URL http://link.aps.org/abstract/PRL/v89/e065003

    Google Scholar 

  138. Zigler, A., Ehrlich, Y., Cohen, C., et al.: Optical guidingof high-intensity laser pulses in a long plasma channelformed by a slow capillary discharge. J. Opt. Soc. Am. B13(1), 68–71 (1996). DOI 10.1364/JOSAB.13.000068. URL http://josab.osa.org/abstract.cfm?URI=josab-13-1-68

    Google Scholar 

  139. Zweiback, J., Cowan, T.E., Smith, R.A., et al.: Characterization of fusionburn time in exploding deuterium cluster plasmas. Phys. Rev. Lett. 85(17), 3640–3643 (2000). DOI 10.1103/PhysRevLett.85.3640. URL http://link.aps.org/abstract/PRL/v85/p3640

    Google Scholar 

  140. Zweiback, J., Ditmire, T.: Femtosecond laser energy deposition in stronglyabsorbing cluster gases diagnosed by blast wave trajectory analysis. Phys.Plasmas 8(10),4545–4550 (2001). DOI 10.1063/1.1394778

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir E. Fortov .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fortov, V.E. (2011). Technical Applications of the Physics of High Energy Densities. In: Extreme States of Matter. The Frontiers Collection. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16464-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16464-4_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16463-7

  • Online ISBN: 978-3-642-16464-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics