Skip to main content

High-Power Lasers in High-Energy-Density Physics

  • Chapter
  • First Online:
Extreme States of Matter

Part of the book series: The Frontiers Collection ((FRONTCOLL))

  • 1368 Accesses

Abstract

The rapid progress of laser technology has opened up the possibility of generating ultrashort laser pulses of the nano–pico–femto1–atto–second range and of bringing (see Tables 3.2, 3.3; Fig. 3.2) the existing and projected laser complexes into the petawatt–zettawatt power range (Figs 4.1, 4.2), making it possible to span a wide range of power densities up to the highest values achievable today, q ≈ 1022– 1023  W/cm2 [70, 69, 6, 14], which will undoubtedly rise with time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anisimov, S.I., Prokhorov, A.M., Fortov, V.E.: Application of high-power lasers to study matter at ultrahigh pressures. Sov. Phys. – Usp. 27(3), 181–205 (1984). DOI 10.1070/PU1984v027n03ABEH004036. URL http://stacks.iop.org/0038-5670/27/181

  2. Arkani-Hamed, N., Dimopoulos, S., Dvali, G.: Phenomenology, astrophysics, and cosmology of theories with submillimeter dimensions and TeV scale quantum gravity. Phys. Rev. D 59(8), 086004 (1999). DOI 10.1103/PhysRevD.59.086004. URL http://link.aps.org/abstract/PRD/v59/e086004

  3. Atzeni, S., Meyer-ter-Vehn, J.: The Physics of Inertial Fusion. Oxford University Press, Oxford (2004)

    Book  Google Scholar 

  4. Avrorin, E.N., Simonenko, V.A., Shibarshov, L.I.: Physics research during nuclear explosions. Phys. Usp. 49(4), 432 (2006). DOI 10.1070/PU2006v049n04ABEH005958. URL http://ufn.ru/en/articles/2006/4/j/

  5. Avrorin, E.N., Vodolaga, B.K., Simonenko, V.A., Fortov, V.E.: Intense shock waves and extreme states of matter. Phys. Usp. 36(5), 337–364 (1993). DOI 10.1070/PU1993v036n05ABEH002158. URL http://stacks.iop.org/1063-7869/36/337

    Google Scholar 

  6. Bahk, S.W., Rousseau, P., Planchon, T.A., etal.: Generation and characterization of the highest laser intensities (1022 W/cm2). Opt. Lett. 29(24), 2837–2839 (2004). DOI 10.1364/OL.29.002837. URL http://www.opticsinfobase.org/abstract.cfm?URI=ol-29-24-2837

  7. Bamber, C., Boege, S.J., Koffas, T., etal.: Studies of nonlinear QED in collisions of 46.6  GeV electrons with intense laser pulses. Phys. Rev. D 60(9), 092004 (1999). DOI 10.1103/PhysRevD.60.092004. URL http://link.aps.org/abstract/PRD/v60/e092004

    Google Scholar 

  8. Beg, F.N., Bell, A.R., Dangor, A.E., etal.: A study of picosecond laser–solid interactions up to 1019 W cm-2. Phys. Plasmas 4(2), 447–457 (1997). DOI 0.1063/1.872103

    Article  ADS  Google Scholar 

  9. Belov, I.A., etal.: In: Int. conf. “X Kharitonov’s thematic scientific readings”, p. 145. RPhNZ-VNIIEPh, Sarov (2008)

    Google Scholar 

  10. Belyaev, V.S., Krainov, V.P., Lisitsa, V.S., Matafonov, A.P.: Generation of fast charged particles and superstrong magnetic fields in the interaction of ultrashort high-intensity laser pulses with solid targets. Phys. Usp. 51(8), 793 (2008). DOI 10.1070/PU2008v051n08ABEH006541. URL http://ufn.ru/en/articles/2008/8/b/

  11. Benuzzi-Mounaix, A., Koenig, M., Ravasio, A., etal.: Laser-driven shock waves for the study of extreme matter states. Plasma Phys. Control. Fusion 48(12B), B347–B358 (2006). DOI 10.1088/0741-3335/48/12B/S32

    Article  Google Scholar 

  12. Boyko, B.A., Bykov, A.I., etal.: More than 20 MG magnetic field generation in the cascade magnetocumulative MC-1 generator. In: H.J. Schneider-Muntau (ed.) Megagauss Magnetic Field Generation, Its Application to Science and Ultra-High Pulsed-Power Technology. Proc. VIIIth Int. Conf. Megagauss Magnetic Field Generation and Related Topics, p. 61. World Scientific, Singapore (2004)

    Google Scholar 

  13. Bula, C., McDonald, K.T., Prebys, E.J., etal.: Observation of nonlinear effects in Compton scattering. Phys. Rev. Lett. 76(17), 3116–3119 (1996). DOI 10.1103/PhysRevLett.76.3116. URL http://link.aps.org/abstract/PRL/v76/p3116

    Google Scholar 

  14. Bulanov, S.V.: New epoch in the charged particle acceleration by relativistically intense laser radiation. Plasma Phys. Control. Fusion 48(12B), B29–B37 (2006). DOI 10.1088/0741-3335/48/12B/S03

    Article  Google Scholar 

  15. Bulanov, S.V., Inovenkov, I.N., Kirsanov, V.I., etal.: Nonlinear depletion of ultrashort and relativistically strong laser pulses in an underdense plasma. Phys. Fluids B 4(7), 1935–1942 (1992). DOI 10.1063/1.860046. URL http://dx.doi.org/10.1063/1.860046

  16. Bulanov, S.V., Naumova, N.M., Pegoraro, F.: Interaction of an ultrashort, relativistically strong laser pulse with an overdense plasma. Phys. Plasmas 1(3), 745–757 (1994). DOI 10.1063/1.870766

    Article  ADS  Google Scholar 

  17. Bunkenberg, J., Boles, J., Brown, D., etal.: The omega high-power phosphate-glass system: design and performance. IEEE J. Quantum Electron. 17(9), 1620–1628 (1981)

    Article  ADS  Google Scholar 

  18. Burke, D.L., Field, R.C., Horton-Smith, G., etal.: Positron production in multiphoton light-by-light scattering. Phys. Rev. Lett. 79(9), 1626–1629 (1997). DOI 10.1103/PhysRevLett.79.1626. URL http://link.aps.org/abstract/PRL/v79/p1626

    Google Scholar 

  19. Checkhlov, O., Divall, E.J., Ertel, K., etal.: Development of petawatt laser amplification systems at the central laser facility. Proc. SPIE 6735(1), 67350 J (2007). DOI 10.1117/12.753222. URL http://link.aip.org/link/?PSI/6735/67350 J/1

  20. Chen, P., Tajima, T.: Testing Unruh radiation with ultraintense lasers. Phys. Rev. Lett. 83(2), 256–259 (1999). DOI 10.1103/PhysRevLett.83.256. URL http://link.aps.org/abstract/PRL/v83/p256

    Google Scholar 

  21. Chiu, C., Fomytskyi, M., Grigsby, F., etal.: Laser electron accelerators for radiation medicine: A feasibility study. Med. Phys. 31(7), 2042–2052 (2004). DOI 10.1118/1.1739301. URL http://dx.doi.org/10.1118/1.1739301

  22. Clark, E.L., Krushelnick, K., Davies, J.R., etal.: Measurements of energetic proton transport through magnetized plasma from intense laser interactions with solids. Phys. Rev. Lett. 84(4), 670–673 (2000). DOI 10.1103/PhysRevLett.84.670. URL http://link.aps.org/abstract/PRL/v84/p670

    Google Scholar 

  23. Cowan, T.E., Hunt, A.W., Johnson, J., etal.: High energy electrons, positrons and photonuclear reactions in petawatt laser–solid experiments. In: H.B. I. Tajima K. Mima (ed.) High Field Science, p. 145. Kluwer/Plenum, New York (2000)

    Google Scholar 

  24. Cowan, T.E., Hunt, A.W., Phillips, T.W., etal.: Photonuclear fission from high energy electrons from ultraintense laser-solid interactions. Phys. Rev. Lett. 84(5), 903–906 (2000). DOI 10.1103/PhysRevLett.84.903. URL http://link.aps.org/abstract/PRL/v84/p903

    Google Scholar 

  25. Disdier, L., Garconnet, J.P., Malka, G., Miquel, J.L.: Fast neutron emission from a high-energy ion beam produced by a high-intensity subpicosecond laser pulse. Phys. Rev. Lett. 82(7), 1454–1457 (1999). DOI 10.1103/PhysRevLett.82.1454. URL http://link.aps.org/abstract/PRL/v82/p1454

    Google Scholar 

  26. ELI: The Extreme Light Infrastructure European Project: ELI homepage. URL http://www.extreme-light-infrastructure.eu/

  27. Eliezer, S., Mendonca, J.T., Bingham, R., Norreys, P.: A new diagnostic for very high magnetic fields in expanding plasmas. Phys. Lett. A 336(4-5), 390–395 (2005). DOI doi:10.1016/j.physleta.2005.01.040

    Article  MATH  ADS  Google Scholar 

  28. Esirkepov, T., Yamagiwa, M., Tajima, T.: Laser ion-acceleration scaling laws seen in multiparametric particle-in-cell simulations. Phys. Rev. Lett. 96(10), 105001 (2006). DOI 10.1103/PhysRevLett.96.105001. URL http://link.aps.org/abstract/PRL/v96/e105001

    Google Scholar 

  29. Esirkepov, T.Z., Bulanov, S.V., Nishihara, K., etal.: Proposed double-layer target for the generation of high-quality laser-accelerated ion beams. Phys. Rev. Lett. 89(17), 175003 (2002). DOI 10.1103/PhysRevLett.89.175003. URL http://link.aps.org/abstract/PRL/v89/e175003

    Google Scholar 

  30. Fortov, V.E.: Intense Shock Waves and Extreme States of Matter. Bukos, Moscow (2005)

    Google Scholar 

  31. Fortov, V.E. (ed.): Explosive-Driven Generators of Powerful Electrical Current Pulses. Cambridge International Science, Cambridge (2007)

    Google Scholar 

  32. Fortov, V.E., Hoffmann, D.H.H., Sharkov, B.Y.: Intense ion beams for generating extreme states of matter. Phys. Usp. 51(2), 109 (2008). DOI 10.1070/PU2008v051n02ABEH006420. URL http://ufn.ru/en/articles/2008/2/a/

    Google Scholar 

  33. Fujiwara, M., Kawase, K., Titov, A.T.: Parity non-conservation measurements with photons at SPring-8. AIP Conf. Proc. 802(1), 246–249 (2005). DOI 10.1063/1.2140661. URL http://link.aip.org/link/?APC/802/246/1

  34. Gahn, C., Tsakiris, G.D., Pretzler, G., etal.: Generating positrons with femtosecond-laser pulses. Appl. Phys. Lett. 77(17), 2662–2664 (2000). DOI 10.1063/1.1319526. URL http://link.aip.org/link/?APPLAB/77/2662/1

    Google Scholar 

  35. Galy, J., Maucec, M., Hamilton, D.J., etal.: Bremsstrahlung production with high-intensity laser matter interactions and applications. New J. Phys. 9(2), 23 (2007). DOI 10.1088/1367-2630/9/2/023

    Article  ADS  Google Scholar 

  36. Giddings, S.B., Thomas, S.: High energy colliders as black hole factories: The end of short distance physics. Phys. Rev. D 65(5), 056010 (2002). DOI 10.1103/PhysRevD.65.056010. URL http://link.aps.org/abstract/PRD/v65/e056010

    Google Scholar 

  37. Ginzburg, V.L.: Applications of Electrodynamics in Theoretical Physics and Astrophysics. Gordon and Breach, New York (1989)

    Google Scholar 

  38. Ginzburg, V.L.: The Physics of a Lifetime: Reflections on the Problems and Personalities of 20th Century Physics. Springer, Berlin, Heidelberg (2001)

    Google Scholar 

  39. Hawke, P.S., Burgess, T.J., Duerre, D.E., etal.: Observation of electrical conductivity of isentropically compressed hydrogen at megabar pressures. Phys. Rev. Lett. 41(14), 994–997 (1978). URL http://link.aps.org/abstract/PRL/v41/p994

    Google Scholar 

  40. Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys. 43(3), 199–220 (1975). DOI 10.1007/BF02345020

    Article  MathSciNet  ADS  Google Scholar 

  41. HiPER: High Power Laser Energy Research Project: HiPER homepage. URL http://www.hiper-laser.org/

  42. Jung, I.D., Kartner, F.X., Matuschek, N., etal.: Self-starting 6.5-fs pulses from a Ti:sapphire laser. Opt. Lett. 22(13), 1009–1011 (1997). DOI 10.1364/OL.22.001009. URL http://www.opticsinfobase.org/abstract.cfm?URI=ol-22-13-1009

  43. Kando, M., Nakajima, K., Arinaga, M., etal.: Interaction of terawatt laser with plasma. J. Nucl. Mater. 248(1), 405–407 (1997). DOI 10.1016/S0022-3115(97)00177-3

    Article  ADS  Google Scholar 

  44. Kanel, G.I., Rasorenov, S.V., Fortov, V.E.: Shock-Wave Phenomena and the Properties of Condensed Matter. Springer, New York (2004)

    Google Scholar 

  45. Khazanov, E.A., Sergeev, A.M.: Petawatt laser based on optical parametric amplifiers: their state and prospects. Phys. Usp. 51(9), 969 (2008). DOI 10.1070/PU2008v051n09ABEH006612. URL http://ufn.ru/en/articles/2008/9/h/

    Google Scholar 

  46. King, N.S.P., Ables, E., Adams, K., etal.: An 800-MeV proton radiography facility for dynamic experiments. Nucl. Instrum. Meth. Phys. Res. A 424(1), 84–91 (1999). DOI 10.1016/S0168-9002(98)01241-8

    Google Scholar 

  47. Kodama, R., Tanaka, K.A., Sentoku, Y., etal.: Observation of ultrahigh gradient electron acceleration by a self-modulated intense short laser pulse. Phys. Rev. Lett. 84(4), 674–677 (2000). DOI 10.1103/PhysRevLett.84.674. URL http://link.aps.org/abstract/PRL/v84/p674

    Google Scholar 

  48. Konyukhov, A.V., Likhachev, A.P., Oparin, A.M., etal.: Numerical modeling of shock-wave instability in thermodynamically nonideal media. JETP 98(4), 811–819 (2004). DOI 10.1134/1.1757680

    Article  ADS  Google Scholar 

  49. Kruer, W.L.: The Physics of Laser Plasma Interactions. Addison-Wesley, Reading, MA (1988)

    Google Scholar 

  50. Ledingham, K.W.D., McKenna, P., Singhal, R.P.: Applications for nuclear phenomena generated by ultra-intense lasers. Science 300(5622), 1107–1111 (2003). DOI 10.1126/science.1080552. URL http://www.sciencemag.org/cgi/content/abstract/300/5622/1107

    Google Scholar 

  51. Ledingham, K.W.D., Spencer, I., McCanny, T., etal.: Photonuclear physics when a multiterawatt laser pulse interacts with solid targets. Phys. Rev. Lett. 84(5), 899–902 (2000). DOI 10.1103/PhysRevLett.84.899. URL http://link.aps.org/abstract/PRL/v84/p899

    Google Scholar 

  52. Leemans, W.P., Rodgers, D., Catravas, P.E., etal.: Interaction of an ultrashort, relativistically strong laser pulse with an overdense plasma. Phys. Plasmas 8(5), 2510–2516 (2001). DOI 10.1063/1.1352617

    Article  ADS  Google Scholar 

  53. Liang, E.P., Wilks, S.C., Tabak, M.: Pair production by ultraintense lasers. Phys. Rev. Lett. 81(22), 4887–4890 (1998). DOI 10.1103/PhysRevLett.81.4887. URL http://link.aps.org/abstract/PRL/v81/p4887

    Google Scholar 

  54. Lindl, J.D.: Inertial Confinement Fusion. Springer, New York (1998)

    Google Scholar 

  55. Mackinnon, A.J., Borghesi, M., Hatchett, S., etal.: Effect of plasma scale length on multi-MeV proton production by intense laser pulses. Phys. Rev. Lett. 86(9), 1769–1772 (2001). DOI 10.1103/PhysRevLett.86.1769. URL http://link.aps.org/abstract/PRL/v86/p1769

    Google Scholar 

  56. Magill, J., Schwoerer, H., Ewald, F., etal.: Laser transmutation of iodine-129. Appl. Phys. B 77(4), 387–390 (2003). DOI 10.1007/s00340-003-1306-4

    Article  ADS  Google Scholar 

  57. MAGPIE Project: MAGPIE Project Home Page. URL http://dorland.pp.ph.ic.ac.uk/magpie/

  58. aine, P., Mourou, G.: Amplification of 1-nsec pulses in Nd:glass followed by compression to 1 psec. Opt. Lett. 13(3), 467–469 (1988). URL http://www.opticsinfobase.org/abstract.cfm?URI=ol-13-6-467

  59. Maine, P., Strickland, D., Bado, P., etal.: Generation of ultrahigh peak power pulses by chirped pulse amplification. IEEE J. Quantum Electron. 24(2), 398–403 (1988). DOI 10.1109/3.137

    Article  ADS  Google Scholar 

  60. Maksimchuk, A., Flippo, K., Krause, H., etal.: Plasma phase transition in dense hydrogen and electron–hole plasmas. Plasma Phys. Rep. 30(6), 473–495 (2004). DOI 10.1134/1.1768582

    Article  ADS  Google Scholar 

  61. Maksimchuk, A., Gu, S., Flippo, K., etal.: Forward ion acceleration in thin films driven by a high-intensity laser. Phys. Rev. Lett. 84(18), 4108–4111 (2000). DOI 10.1103/PhysRevLett.84.4108. URL http://link.aps.org/abstract/PRL/v84/p4108

    Google Scholar 

  62. Malka, G., Aleonard, M.M., Chemin, J.F., etal.: Relativistic electron generation in interactions of a 30 TW laser pulse with a thin foil target. Phys. Rev. E 66(6), 066402 (2002). DOI 10.1103/PhysRevE.66.066402. URL http://link.aps.org/abstract/PRE/v66/e066402

    Google Scholar 

  63. Malka, V., Fritzler, S., Lefebvre, E., etal.: Electron acceleration by a wake field forced by an intense ultrashort laser pulse. Science 298(5598), 1596–1600 (2002). DOI 10.1126/science.1076782. URL http://www.sciencemag.org/cgi/content/abstract/298/5598/1596

    Google Scholar 

  64. Mangles, S.P.D., Murphy, C.D., Najmudin, Z., etal.: Monoenergetic beams of relativistic electrons from intense laser–plasma interactions. Nature 431(7008), 535–538 (2004). DOI 10.1038/nature02939

    Article  ADS  Google Scholar 

  65. Mason, R.J., Tabak, M.: Magnetic field generation in high–intensity–laser––matter interactions. Phys. Rev. Lett. 80(3), 524–527 (1998). DOI 10.1103/PhysRevLett.80.524. URL http://link.aps.org/abstract/PRL/v80/p524

    Google Scholar 

  66. McKenna, P., Ledingham, K.W., Shimizu, S., etal.: Broad energy spectrum of laser-accelerated protons for spallation-related physics. Phys. Rev. Lett. 94(8), 084801 (2005). DOI 10.1103/PhysRevLett.94.084801. URL http://link.aps.org/abstract/PRL/v94/e084801

    Google Scholar 

  67. Mima, K., Fast Ignition Research Group: Present status and future prospects of laser fusion and related high energy density plasma research. AIP Conf. Proc. 740(1), 387–397 (2004). DOI 10.1063/1.1843522. URL http://link.aip.org/link/?APC/740/387/1

  68. Mima, K., Ohsuga, T., Takabe, H., etal.: Wakeless triple-soliton accelerator. Phys. Rev. Lett. 57(12), 1421–1424 (1986). URL http://link.aps.org/abstract/PRL/v57/p1421

    Google Scholar 

  69. Mourou, G.A., Barry, C.P.J., Perry, M.D.: Ultrahigh-intensity lasers: physics of the extreme on a tabletop. Phys. Today 51(1), 22–28 (1998). DOI 10.1063/1.882131

    Article  ADS  Google Scholar 

  70. Mourou, G.A., Tajima, T., Bulanov, S.V.: Optics in the relativistic regime. Rev. Mod. Phys. 78(2), 1804–1816 (2006). DOI 10.1103/RevModPhys.78.309. URL http://link.aps.org/abstract/RMP/v78/p309

    Google Scholar 

  71. Najmudin, Z., Walton, B.R., Mangles, S.P.D., etal.: Measurements of magnetic fields generated in underdense plasmas by intense lasers. AIP Conf. Proc. 827(1), 53–64 (2006). DOI 10.1063/1.2195197. URL http://link.aip.org/link/?APC/827/53/1

  72. Nakajima, K., Fisher, D., Kawakubo, T., etal.: Observation of ultrahigh gradient electron acceleration by a self-modulated intense short laser pulse. Phys. Rev. Lett. 74(22), 4428–4431 (1995). DOI 10.1103/PhysRevLett.74.4428. URL http://link.aps.org/abstract/PRL/v74/p4428

    Google Scholar 

  73. Narozhny, N.B., Bulanov, S.S., Mur, V.D., Popov, V.S.: e+e- – pair production by a focused laser pulse in vacuum.Phys. Lett. A 330(1-2), 1–6 (2004). DOI 10.1016/j.physleta.2004.07.013

    Article  MATH  ADS  Google Scholar 

  74. National Research Council: Frontiers in High Energy Density Physics. National Academies Press, Washington, DC (2003)

    Google Scholar 

  75. Nellis, W.J.: Shock compression of hydrogen and other small molecules. In: G.L. Chiarotti, R.J. Hemley, M. Bernasconi, L. Ulivi (eds.) High Pressure Phenomena, Proceedings of the International School of Physics “Enrico Fermi” Course CXLVII, p. 607. IOS Press, Amsterdam (2002)

    Google Scholar 

  76. Norreys, P.A., Santala, M., Clark, E., etal.: Observation of a highly directional γ-ray beam from ultrashort, ultraintense laser pulse interactions with solids. Phys. Plasmas 6(5), 2150–2156 (1999). DOI 10.1063/1.873466

    Article  ADS  Google Scholar 

  77. Okun’, L.B.: Leptony i kvarki, 2nd edn. Nauka, Moscow (1990). [English Transl.: Leptons and Quarks. North-Holland, Amsterdam (1982)]

    Google Scholar 

  78. Parker, L.: Quantized fields and particle creation in expanding universes. I. Phys. Rev. 183(5), 1057–1068 (1969). DOI 10.1103/PhysRev.183.1057. URL http://link.aps.org/abstract/PR/v183/p1057

    Google Scholar 

  79. Pavlovski, A.I., Boriskov, G.V., etal.: Isentropic solid hydrogen compression by ultrahigh magnetic field pressure in megabar range. In: C.M. Fowler, R.S. Caird, D.T. Erickson (eds.) Megagauss Technology and Pulsed Power Applications, p. 255. Plenum, New York (1987)

    Google Scholar 

  80. Pukhov, A.: Strong field interaction of laser radiation. Rep. Prog. Phys. 66(1), 47–101 (2003). DOI 10.1088/0034-4885/66/1/202

    Article  ADS  Google Scholar 

  81. Pukhov, A., Meyer-ter-Vehn, J.: Laser wake field acceleration: the highly non-linear broken-wave regime. Appl. Phys. B 74(4-5), 355–361 (2002). DOI 10.1007/s003400200795

    Article  ADS  Google Scholar 

  82. Rubakov, V.A.: Multidimensional models of particle physics. Phys. Usp. 46(2), 211 (2003). DOI 10.1070/PU2003v046n02ABEH001355. URL http://ufn.ru/en/articles/2003/2/e/

  83. Rubakov, V.A., Shaposhnikov, M.E.: Do we live inside a domain wall? Phys. Lett. B 125(2-3), 136–138 (1983). DOI 10.1016/0370-2693(83)91253-4

    Article  ADS  Google Scholar 

  84. Ryutov, D.D., Remington, B.A., Robey, H.F., Drake, R.P.: Magnetodynamic scaling: from astrophysics to the laboratory. Phys. Plasmas 8(5), 1804–1816 (2001). DOI 10.1063/1.1344562

    Article  ADS  Google Scholar 

  85. Sarkisov, G.S., Bychenkov, V.Y., Novikov, V.N., etal.: Self-focusing, channel formation, and high-energy ion generation in interaction of an intense short laser pulse with a He jet. Phys. Rev. E 59(6), 7042–7054 (1999). DOI 10.1103/PhysRevE.59.7042. URL http://link.aps.org/abstract/PRE/v59/p7042

  86. Schutzhold, R., Schaller, G., Habs, D.: Signatures of the Unruh effect from electrons accelerated by ultrastrong laser fields. Phys. Rev. Lett. 97(12), 121302 (2006). DOI 10.1103/PhysRevLett.97.121302. URL http://link.aps.org/abstract/PRL/v97/e121302

    Google Scholar 

  87. Schwoerer, H., Ewald, F., Sauerbrey, R., etal.: Fission of actinides using a tabletop laser. Europhys. Lett. 91(1), 47–52 (2003). DOI 10.1209/epl/i2003-00243-1

    Article  ADS  Google Scholar 

  88. Schwoerer, H., Magill, J., Beleites, B. (eds.): Lasers and Nuclei: Applications of Ultrahigh Intensity Lasers in Nuclear Science, emphLecture Notes in Physics, vol. 694. Springer, Berlin (2006)

    Google Scholar 

  89. Shearer, J.W., Garrison, J., Wong, J., Swain, J.E.: Pair production by relativistic electrons from an intense laser focus. Phys. Rev. A 8(3), 1582–1588 (1972). DOI 10.1103/PhysRevA.8.1582. URL http://link.aps.org/abstract/PRA/v8/p1582

    Google Scholar 

  90. Strickland, D., Mourou, G.: Compression of amplified chirped optical pulses. Opt. Commun. 56(3), 219–221 (1985). DOI 10.1016/0030-4018(85)90120-8

    Article  ADS  Google Scholar 

  91. Strickland, D., Mourou, G.: Compression of amplified chirped optical pulses. Opt. Commun. 55(6), 447–449 (1985). DOI 10.1016/0030-4018(85)90151-8

    Article  ADS  Google Scholar 

  92. Sudan, R.N.: Mechanism for the generation of 10 9 G magnetic fields in the interaction of ultraintense short laser pulse with an overdense plasma target. Phys. Rev. Lett. 70(20), 3075–3078 (1993). DOI 10.1103/PhysRevLett.70.3075

    Article  ADS  Google Scholar 

  93. Tajima, T.: Summary of Working Group 7 on “Exotic acceleration schemes”. AIP Conf. Proc. 569(1), 77–81 (2001). DOI 10.1063/1.1384337. URL http://link.aip.org/link/?APC/569/77/1

  94. Tatarakis, M., Gopal, A., Watts, I., etal.: Measurements of ultrastrong magnetic fields during relativistic laser–plasma interactions. Phys. Plasmas 9(5), 2244–2250 (2002). DOI 10.1063/1.1469027. URL http://link.aip.org/link/?PHP/9/2244/1

    Google Scholar 

  95. Tatarakis, M., Watts, I., Beg, F.N., etal.: Laser technology: Measuring huge magnetic fields. Nature 415(6869), 280 (2002). DOI 10.1038/415280a

    Article  ADS  Google Scholar 

  96. Telnov, V.: Photon collider at TESLA. Nucl. Instrum. Methods Phys. Res. A 472(1-2), 43–60 (2001). DOI 110.1016/S0168-9002(01)01161-5

    Article  ADS  Google Scholar 

  97. Thoma, M.H.: Field theoretic description of ultrarelativistic electron–positron plasmas (2008). URL http://arxiv.org/abs/0801.0956

  98. Trunin, R.F.: Shock compressibility of condensed materials in strong shock waves generated by underground nuclear explosions. Phys. Usp. 37(11), 1123 (1994). DOI 10.1070/PU1994v037n11ABEH000055. URL http://ufn.ru/en/articles/1994/11/d/

  99. Umstadter, D.: Photonuclear physics: Laser light splits atom. Nature 404(6775), 239 (2000). DOI 10.1038/35005202

    Article  Google Scholar 

  100. Unruh, W.G.: Notes on black-hole evaporation. Phys. Rev. D 14(4), 870–892 (1976). DOI 10.1103/PhysRevD.14.870. URL http://link.aps.org/abstract/PRD/v14/p870

    Google Scholar 

  101. Vacca, J.R. (ed.): The World’s 20 Greatest Unsolved Problems. Prentice Hall PTR, Englewood Cliffs, NJ (2004)

    Google Scholar 

  102. Vladimirov, A.S., Voloshin, N.P., Nogin, V.N., etal.: Shock compressibility of aluminum at p > 1 Gbar. JETP Lett. 39(2), 82 (1984)

    ADS  Google Scholar 

  103. Wagner, U., Tatarakis, M., Gopal, A., etal.: Laboratory measurements of 0.7 gg magnetic fields generated during high-intensity laser interactions with dense plasmas. Phys. Rev. E 70(2), 026401 (2004). DOI 10.1103/PhysRevE.70.026401

    Article  ADS  Google Scholar 

  104. Weibel, E.S.: Spontaneously growing transverse waves in a plasma due to an anisotropic velocity distribution. Phys. Rev. Lett. 2(3), 83–84 (1959). DOI 10.1103/PhysRevLett.2.83

    Article  ADS  Google Scholar 

  105. Zagar, T., Galy, J., Magill, J., Kellett, M.: Laser-generated nanosecond pulsed neutron sources: scaling from VULCAN to table-top. New J. Phys. 7, 253 (2005). DOI 10.1088/1367-2630/7/1/253. URL http://www.iop.org/EJ/abstract/1367-2630/7/1/253

  106. Zasov, A.V., Postnov, K.A.: Obshchaya astrofizika (General Astrophysics). Vek 2, Fryazino (2006)

    Google Scholar 

  107. Zeldovich, Y.B., Popov, V.S.: Electronic structure of superheavy atoms. Sov. Phys. – Usp. 14, 673 (1972)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir E. Fortov .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fortov, V.E. (2011). High-Power Lasers in High-Energy-Density Physics. In: Extreme States of Matter. The Frontiers Collection. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16464-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16464-4_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16463-7

  • Online ISBN: 978-3-642-16464-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics