Entropy in Natural Time

  • Panayiotis A. Varotsos
  • Nicholas V. Sarlis
  • Efthimios S. Skordas
Chapter
Part of the Springer Praxis Books book series (PRAXIS)

Abstract

Entropy is a concept equally applicable to deterministic as well as stochastic processes. An entropy S is defined in natural time, which exhibits positivity, concavity and Lesche’s (experimental) stability. The entropy S- deduced from analyzing in natural time the time series obtained upon time reversal, is in general different from S, thus the entropy in natural time does satisfy the condition to be “causal” (while the variance κ1 = x 2 x 2 does not). The physical meaning of the change ΔS ≡ S-S- of the entropy in natural time under time reversal, which is of profound importance for the study of the dynamical evolution of a complex system, is discussed. For a fractional Brownian motion time series with self-similarity exponent H close to unity, as well as for an on– off intermittency model when the critical value is approached from below, both values of S and S- are smaller than the entropy Su~ 0.0966 of a “uniform” distribution. When a (natural) time window of length l is sliding through a time series, the entropy S exhibits fluctuations, a measure of which is the standard deviation δS. Complexity measures are introduced that quantify the δS variability upon changing the length scale l as well as the extent to which δS is affected when shuffling the consecutive events randomly (for l = const.). In a similar fashion, complexity measures can be defined for the fluctuations of the quantity ΔS whose standard deviation is designated σ[ΔS]. For the case that Qk are independent and identically distributed positive random variables, as in the case of data shuffled randomly, their σ/μ value is interrelated with δS and σ[ΔS].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Abe, S.: Stability of Tsallis entropy and instabilities of R´enyi and normalized Tsallis entropies: A basis for q-exponential distributions. Phys. Rev. E 66, 046134 (2002)CrossRefGoogle Scholar
  3. 3.
    Abe, S., Kaniadakis, G., Scarfone, A.M.: Stabilities of generalized entropies. J. Phys. A: Math. Gen. 37, 10,513–10,519 (2004)Google Scholar
  4. 4.
    Balmforth, N.J., Provenzale, A., Spiegel, E.A., Martens, M., Tresser, C., Wu, C.W.: Red spectra from white and blue noise. Proc. R. Soc. London, Ser. B 266, 311–314 (1999)Google Scholar
  5. 5.
    Beck, C., Schl¨ogl, F.: Thermodynamics of chaotic systems, an introduction. Cambridge University Press, Cambridge, UK (1997)Google Scholar
  6. 6.
    Beck, C., Schl¨ogl, F.: Thermodynamics of Chaotic Systems: An Introduction. Cambridge University Press, Cambridge, UK (1993)Google Scholar
  7. 7.
    Dorfman, G.R.: Introduction to Chaos in Nonequilibrium Statistical Mechanics. Cambridge University Press, Cambridge, England (1999)CrossRefGoogle Scholar
  8. 8.
    Eckmann, J.P., Ruelle, D.: Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57, 617– 656 (1985)CrossRefGoogle Scholar
  9. 9.
    Feller, W.: An Introduction to Probability Theory and Its Applications, Vol. II. Wiley, New York (1971)Google Scholar
  10. 10.
    Frame, M., Mandelbrot, B., Neger, N.: Fractal Geometry, Yale University, available from http://classes.yale.edu/fractals/, see http://classes.yale.edu/Fractals/RandFrac/fBm/fBm4.html
  11. 11.
    Gradsteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series and Products. Academic Press, San Diego (1980)Google Scholar
  12. 12.
    Grassberger, P., Procaccia, I.: Estimation of the Kolmogorov entropy from a chaotic signal. Phys. Rev. A 28, 2591–2593 (1983)CrossRefGoogle Scholar
  13. 13.
    Heagy, J.F., Platt, N., Hammel, S.M.: Characterization of on–off intermittency. Phys. Rev. E 49, 1140–1150 (1994)CrossRefGoogle Scholar
  14. 14.
    Hurst, H.E.: Long-term storage capacity of reservoirs. Trans. Am. Soc. Civ. Eng. 116, 770–808 (1951)Google Scholar
  15. 15.
    Jizba, P., Arimatsu, T.: Observability of R´enyi’s entropy. Phys. Rev. E 69, 026128 (2004)CrossRefGoogle Scholar
  16. 16.
    Kaniadakis, G., Lissia, M., Scarfone, A.M.: Two-parameter deformations of logarithm, exponential, and entropy: A consistent framework for generalized statistical mechanics. Phys. Rev. E 71, 046128 (2005)CrossRefGoogle Scholar
  17. 17.
    Kaniadakis, G., Scarfone, A.M.: Lesche stability of κ-entropy. Physica A 340, 102–109 (2004)Google Scholar
  18. 18.
    Lesche, B.: Instabilities of R´enyi entropies. J. Stat. Phys. 27, 419–422 (1982)CrossRefGoogle Scholar
  19. 19.
    Lesche, B.: R´enyi entropies and observables. Phys. Rev. E 70, 017102 (2004)CrossRefGoogle Scholar
  20. 20.
    Maes, C., Netocny, K.: Time-reversal and entropy. J. Stat. Phys. 110, 269–310 (2003)Google Scholar
  21. 21.
    Majewski, E.: in Thermodynamics of chaos and fractals applied: evolution of the Earth and phase transformations, in Earthquake Thermodynamics and Phase Transformations in the Earth’s Interior, R. Teisseyre and E. Majewski (eds). Academic Press, San Diego (2001)Google Scholar
  22. 22.
    Mandelbrot, B.B.: Gaussian Self-Affinity and Fractals. Springer-Verlag, New York (2002)Google Scholar
  23. 23.
    Mandelbrot, B.B., Wallis, J.R.: Some long-run properties of geophysical records. Water Resources Research 5, 321–340 (1969)CrossRefGoogle Scholar
  24. 24.
    Naudts, J.: Continuity of a class of entropies and relative entropies. Rev. Math. Phys. 16, 809–822 (2004)CrossRefGoogle Scholar
  25. 25.
    Pipiras, V., Taqqu, M.S.: Convergence of the Weierstrass-Mandelbrot process to fractional Brownian motion. Fractals 8, 369–384 (2000)CrossRefGoogle Scholar
  26. 26.
    Platt, N., Spiegel, E.A., Tresser, C.: On-off intermittency: A mechanism for bursting. Phys. Rev. Lett. 70, 279–282 (1993)CrossRefGoogle Scholar
  27. 27.
    Pomeau, Y., Manneville, P.: Intermittent transition to turbulence in dissipative dynamical-systems. Commun. Math. Phys. 74, 189–197 (1980)CrossRefGoogle Scholar
  28. 28.
    R´enyi, A.: Probability Theory. North-Holland, Amsterdam (1970)Google Scholar
  29. 29.
    Samorodnitsky, G., Taqqu, M.S.: Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. Chapman & Hall/CRC, Florida (1994)Google Scholar
  30. 30.
    Szulga, J., Molz, F.: The Weierstrass Mandelbrot process revisited. J. Stat. Phys. 104, 1317–1348 (2001)CrossRefGoogle Scholar
  31. 31.
    Tirnakli, U., Abe, S.: Aging in coherent noise models and natural time. Phys. Rev. E 70, 056120 (2004)CrossRefGoogle Scholar
  32. 32.
    Toniolo, C., Provenzale, A., Spiegel, E.A.: Signature of on–off intermittency in measured signals Phys. Rev. E 66, 066209 (2002)Google Scholar
  33. 33.
    Tsallis, C.: What should a statistical mechanics satisfy to reflect nature? Physica D 193, 3–34 (2004)CrossRefGoogle Scholar
  34. 34.
    Tsallis, C., Brigatti, E.: Nonextensive statistical mechanics: A brief introduction. Continuum Mech. Thermodyn. 16, 223–235 (2004)CrossRefGoogle Scholar
  35. 35.
    Varotsos, C.A., Tzanis, C.: On the dynamic evolution of the ozone hole area over Antarctica. under review 1, 123,456 (2010)Google Scholar
  36. 36.
    Varotsos, P.: The Physics of Seismic Electric Signals. TERRAPUB, Tokyo (2005)Google Scholar
  37. 37.
    Varotsos, P., Alexopoulos, K.: Thermodynamics of Point Defects and their Relation with Bulk Properties. North Holland, Amsterdam (1986)Google Scholar
  38. 38.
    Varotsos, P.A., Sarlis, N.V., Skordas, E.S.: Spatio-temporal complexity aspects on the interrelation between Seismic Electric Signals and seismicity. Practica of Athens Academy 76, 294–321 (2001)Google Scholar
  39. 39.
    Varotsos, P.A., Sarlis, N.V., Skordas, E.S.: Long-range correlations in the electric signals that precede rupture. Phys. Rev. E 66, 011902 (2002)CrossRefGoogle Scholar
  40. 40.
    Varotsos, P.A., Sarlis, N.V., Skordas, E.S.: Attempt to distinguish electric signals of a dichotomous nature. Phys. Rev. E 68, 031106 (2003)CrossRefGoogle Scholar
  41. 41.
    Varotsos, P.A., Sarlis, N.V., Skordas, E.S.: Long-range correlations in the electric signals that precede rupture: Further investigations. Phys. Rev. E 67, 021109 (2003)CrossRefGoogle Scholar
  42. 42.
    Varotsos, P.A., Sarlis, N.V., Skordas, E.S., Lazaridou, M.S.: The use of the entropy in the natural time-domain to distinguish electric signals. Practica of Athens Academy 78, 281–298 (2003)Google Scholar
  43. 43.
    Varotsos, P.A., Sarlis, N.V., Skordas, E.S., Lazaridou, M.S.: Entropy in natural time domain. Phys Rev. E 70, 011106 (2004)CrossRefGoogle Scholar
  44. 44.
    Varotsos, P.A., Sarlis, N.V., Skordas, E.S., Lazaridou, M.S.: Natural entropy fluctuations discriminate similar-looking electric signals emitted from systems of different dynamics. Phys. Rev. E 71, 011110 (2005)CrossRefGoogle Scholar
  45. 45.
    Varotsos, P.A., Sarlis, N.V., Skordas, E.S., Lazaridou, M.S.: Identifying sudden cardiac death risk and specifying its occurrence time by analyzing electrocardiograms in natural time. Appl. Phys. Lett. 91, 064106 (2007)CrossRefGoogle Scholar
  46. 46.
    Varotsos, P.A., Sarlis, N.V., Skordas, E.S., Lazaridou, M.S.: Fluctuations, under time reversal, of the natural time and the entropy distinguish similar looking electric signals of different dynamics. J. Appl. Phys. 103, 014906 (2008)CrossRefGoogle Scholar
  47. 47.
    Varotsos, P.A., Sarlis, N.V., Skordas, E.S., Tanaka, H.K., Lazaridou, M.S.: Attempt to distinguish long-range temporal correlations from the statistics of the increments by natural time analysis. Phys. Rev. E 74, 021123 (2006)CrossRefGoogle Scholar
  48. 48.
    Varotsos, P.A., Sarlis, N.V., Skordas, E.S., Tanaka, H.K., Lazaridou, M.S.: Entropy of seismic electric signals: Analysis in the natural time under time reversal. Phys. Rev. E 73, 031114 (2006)CrossRefGoogle Scholar
  49. 49.
    Varotsos, P.A., Sarlis, N.V., Tanaka, H.K., Skordas, E.S.: See (the freely available) EPAPS Document No. E-PLEEE8-71-081503 originally from P.A. Varotsos, N.V. Sarlis, H.K. Tanaka and E.S. Skordas, Phys. Rev. E 71, 032102 (2005). For more information on EPAPS, see http://www.aip.org/pubservs/epaps.html.
  50. 50.
    Varotsos, P.A., Sarlis, N.V., Tanaka, H.K., Skordas, E.S.: Some properties of the entropy in the natural time. Phys. Rev. E 71, 032102 (2005)CrossRefGoogle Scholar
  51. 51.
    Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis. Cambridge University Press, UK (1958)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Panayiotis A. Varotsos
    • 1
  • Nicholas V. Sarlis
    • 1
  • Efthimios S. Skordas
    • 1
  1. 1.University of AthensAthensGreece

Personalised recommendations