Procedure of Partitioning Data Into Number of Data Sets or Data Group – A Review

  • Tai-hoon Kim
Part of the Communications in Computer and Information Science book series (CCIS, volume 78)


The goal of clustering is to decompose a dataset into similar groups based on a objective function. Some already well established clustering algorithms are there for data clustering. Objective of these data clustering algorithms are to divide the data points of the feature space into a number of groups (or classes) so that a predefined set of criteria are satisfied. The article considers the comparative study about the effectiveness and efficiency of traditional data clustering algorithms. For evaluating the performance of the clustering algorithms, Minkowski score is used here for different data sets.


Clustering metric Euclidean Distance K-Means Clustering Genetic Algorithm Fuzzy C Means Clustering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Maulik, U., Bandyopadhyay, S.: Genetic Algorithm-based Clustering Technique. Pattern Recognition Society, 1455–1465 (2000)Google Scholar
  2. 2.
    Faber, V.: Clustering And the Continuous K-means Algorithm. Los Alamos Science (22) (1994)Google Scholar
  3. 3.
    Fayyad, U.M., Reina, C., Bradley, P.S.: Initialization of Iterative Refinement Clustering Algorithms. In: 4th International Conference on Knowledge Discovery & Data Mining (KDD 1998), pp. 194–198 (1998)Google Scholar
  4. 4.
    Bradley, P.S., Fayyad, U.M.: Refining Initial Points for K-Means Clustering. In: Shavlik, J. (ed.) International Conference on Machine Learning (ICML 1998), pp. 91–99 (1998)Google Scholar
  5. 5.
    Krishna, K., Murty, M.: Genetic K-Means Algorithm. IEEE Transactions on Systems, Man and Cybernetics- Part B: Cybernetics 29(3), 433–439 (1999)CrossRefGoogle Scholar
  6. 6.
    Dehuri, S., Ghosh, A., Mall, R.: Genetic Algorithms for Multi-Criterion Classification and clustering in Data Mining. International Journal of Computing and Information Sciences 4(3), 143–154 (2006)Google Scholar
  7. 7.
    Al-Shboul, B., Myaeng, S.-H.: Initializing k-Means Using Genetic Algorithm. World Academy of Science, Engineering and Technology 54 (2009)Google Scholar
  8. 8.
    Comaniciu, D., Meer, P.: Mean Shift: A Robust Approach Toward Feature Space Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(5) (May 2002)Google Scholar
  9. 9.
    Buhmann, J.: Data clustering and learning. In: The Handbook of Brain Theory and Neural Networks, pp. 308–312. The MIT Press, Cambridge (2003)Google Scholar
  10. 10.
    Saha, I., Mukhopadhyay, A.: Improved Crisp and Fuzzy Clustering Techniques for Categorical Data. IAENG International Journal of Computer Science (2008) ISSN: 1819-9224 (online version); 1819-656X, print versionGoogle Scholar
  11. 11.
    Maulik, U., Mukhopadhyay, A., Bandyopad-hyay, S.: Effcient clustering with multi-class point identification. Journal of 3D Images 20, 35–40 (2006)Google Scholar
  12. 12.
    Maulik, U., Bandyopadhyay, S.: Performance Evaluation of Some Clustering Algorithms and Validity Indices. IEEE Transactions On Pattern Analysis And Machine Intelligence 24(12) (December 2002)Google Scholar
  13. 13.
    Alata, M., Molhim, M., Ramini, A.: Optimizing of Fuzzy C-Means Clustering Algorithm Using GA. World Academy of Science, Engineering and Technology (39) (2008)Google Scholar
  14. 14.
    Baraldi, A., Blonda, P.: A Survey of Fuzzy Clustering Algorithms for Pattern Recognition—Part I. IEEE Transactions On Systems, Man, And Cybernetics—Part B: Cybernetics 29(6) (December 1999)Google Scholar
  15. 15.
    Uslan, V., Bucak, Đ.Ö.: Microarray Image Segmentation Using Clustering Methods. Mathematical and Computational Applications 15(2), 240–247 (2010)CrossRefzbMATHGoogle Scholar
  16. 16.
    Kim, S.Y., Choi, T.M.: Fuzzy Types Clustering for Microarray Data. World Academy of Science, Engineering and Technology (4) (2005)Google Scholar
  17. 17.
    Bandyopadhyay, S., Pal, S.K.: Classification and Learning Using Genetic Algorithms: Applications in Bioinformatics and Web Intelligence. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  18. 18.
    Liu, H., Li, J., Chapman, M.A.: Automated Road Extraction from Satellite Imagery Using Hybrid Genetic Algorithms and Cluster Analysis. Journal of Environmental Informatics 1(2), 40–47 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Tai-hoon Kim
    • 1
  1. 1.Multimedia Engineering DepartmentHannam UniversityDaejeonKorea

Personalised recommendations