Skip to main content

Asian Honeybees and Mitochondrial DNA

  • Chapter
  • First Online:

Abstract

This chapter summarises the current state of knowledge on mitochondrial DNA (mtDNA), including both coded and non-coding regions. This tool is now one of the primary sources of data used in the study of animal population biology, biogeography and phylogeny and has played a major role in the study of intra- and inter-specific variation in honeybees. It is now possible to see the large framework of Apis cerana phylogeography as indicated by mtDNA, and four main “lineages” or groups of closely related mtDNA A. cerana haplotypes have been observed. Mitochondrial DNA, nuclear genes and morphometrics do not always paint the same picture of Apis diversity and biogeography although they are in broad agreement. In depth studies of the other Asian honeybees are yet to be completed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Arias MC, Nobrega FG (1991) Location of genes in Apis mellifera scutellata derived mitochondrial DNA of Africanized honeybees. Apidologie 22:611–619

    Article  CAS  Google Scholar 

  • Arias MC, Sheppard WS (1996) Molecular phylogenetics of honeybee subspecies (Apis mellifera L) inferred from mitochondrial DNA sequence. Mol Phylogenet Evol 5:557–566

    Article  CAS  PubMed  Google Scholar 

  • Arias MC, Sheppard WS (2005) Phylogenetic relationships of honeybees (Hymenoptera: Apinae; Apini) inferred from nuclear and mitochondrial DNA sequence data. Mol Phylogenet Evol 37:25–35

    Article  CAS  PubMed  Google Scholar 

  • Arias MC, Tingek S, Kelitu A, Sheppard WS (1996) Apis nulensis Tingek, Koeniger and Koeniger, 1996 and its genetic relationship with sympatric species inferred from DNA sequences. Apidologie 27:415–422

    Article  CAS  Google Scholar 

  • Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE, Reeb CA, Saunders NC (1987) Intraspecific phylogeography – the mitochondrial DNA bridge between populations genetics and systematics. Annu Rev Ecol Syst 18:489–522

    Google Scholar 

  • Behura SK (2007) Analysis of nuclear copies of mitochondrial sequences in honeybee (Apis mellifera) genome. Mol Biol Evol 24:1492–1505

    Article  CAS  PubMed  Google Scholar 

  • Cameron SA (1991) A new tribal phylogeny of the Apidae inferred from mitochondrial DNA sequences. In: Smith DR (ed) Diversity in the genus Apis. Westview, Boulder, pp 71–88

    Google Scholar 

  • Cameron SA (1993) Multiple origins of advanced eusociality in bees inferred from mitochondrial DNA sequences. Proc Natl Acad Sci 90:8687–8691

    Article  CAS  PubMed  Google Scholar 

  • Cameron SA, Mardulyn P (2001) Multiple molecular data sets suggest independent origins of highly eusocial behavior in bees (Hymenoptera: Apinae). Syst Biol 50:194–214

    Article  CAS  PubMed  Google Scholar 

  • Cameron SA, Derr JN, Austin AD, Woollwy JB, Wharton RA (1992) The application of nucleotide sequence data to phylogeny of Hymenoptera: a review. J Hymenopt Res 1:63–79

    Google Scholar 

  • Canovas F, de la Rua P, Serrano J, Galian J (2008) Geographical patterns of mitochondrial DNA variation in Apis mellifera iberiensis (Hymenoptera: Apidae). J Zool Syst Evol Res 46:24–30

    Google Scholar 

  • Cornuet JM, Garnery L (1991) Mitochondrial DNA variability in honeybees and its phylogeographic implications. Apidologie 22:627–642

    Article  CAS  Google Scholar 

  • Cornuet JM, Garnery L, Solignac M (1991) Putative origin and function of the intergenic region between COI and COII of Apis mellifera L mitochondrial DNA. Genetics 128:393–403

    CAS  PubMed  Google Scholar 

  • Crozier RH, Crozier YC (1992) The Cytochrome-b and ATPase genes of honeybee mitochondrial DNA. Mol Biol Evol 9:474–482

    CAS  PubMed  Google Scholar 

  • Crozier RH, Crozier YC (1993) The mitochondrial genome of the honeybee Apis mellifera – complete sequence and genome organization. Genetics 133(1):97–117

    CAS  PubMed  Google Scholar 

  • Crozier RH, Crozier YC, Mackinlay AG (1989) The CO-I and CO-II region of honeybee mitochondrial DNA: evidence for variation in insect mitochondrial evolutionary rates. Mol Biol Evol 6:399–411

    CAS  PubMed  Google Scholar 

  • Crozier YC, Koulianos S, Crozier RH (1991) An improved test for Africanized honeybee mitochondrial DNA. Experientia 47:968–969

    Article  CAS  PubMed  Google Scholar 

  • Damus MS, Otis GW (1997) A morphometric analysis of Apis cerana F and Apis nigrocincta Smith populations from southeast Asia. Apidologie 28:309–323

    Article  Google Scholar 

  • de la Rua P, Serrano J, Galian J (1998) Mitochondrial DNA variability in the Canary Islands honeybees (Apis mellifera L.). Mol Ecol 7:1543–1547

    Article  PubMed  Google Scholar 

  • de la Rua P, Simon UE, Tilde AC, Moritz RFA, Fuchs S (2000) MtDNA variation in Apis cerana populations from the Philippines. Heredity 84:124–130

    Article  Google Scholar 

  • de la Rua P, Galian J, Serrano J, Moritz RFA (2001a) Genetic structure and distinctness of Apis mellifera L. populations from the Canary Islands. Mol Ecol 10:1733–1742

    Article  PubMed  Google Scholar 

  • de la Rua P, Galian J, Serrano J, Moritz RFA (2001b) Molecular characterization and population structure of the honeybees from the Balearic islands (Spain). Apidologie 32:417–427

    Article  Google Scholar 

  • de la Rua P, Jimenez Y, Galian J, Serrano J (2004) Evaluation of the biodiversity of honeybee (Apis mellifera) populations from eastern Spain. J Apis Res 43:162–166

    Google Scholar 

  • de la Rua P, Hernandez-Garcia R, Jimenez Y, Galian J, Serrano J (2005) Biodiversity of Apis mellifera iberica (Hymenoptera: Apidae) from northeastern Spain assessed by mitochondrial analysis. Insect Syst Evol 36:21–28

    Google Scholar 

  • de la Rua P, Galian J, Pedersen BV, Serrano J (2006) Molecular characterization and population structure of Apis mellifera from Madeira and the Azores. Apidologie 37:699–708

    Article  CAS  Google Scholar 

  • deBoer AJ, Duffels JP (1996) Historical biogeography of the cicadas of Wallacea, New Guinea and the West Pacific: a geotectonic explanation. Palaeogeogr Palaeoclimatol Palaeoecol 124:153–177

    Article  Google Scholar 

  • Deowanish S, Nakamura J, Matsuka M, Kimura K (1996) MtDNA variation among subspecies of Apis cerana using restriction fragment length polymorphism. Apidologie 27:407–413

    Article  Google Scholar 

  • Engel MS (1999) The taxonomy of recent and fossil honey bees (Hymenoptera: Apidae; Apis). J Hymenopt Res 8:165–196

    Google Scholar 

  • Engel MS (2003) A replacement name in Apis (Hymenoptera: Apidae). J Kans Entomol Soc 76:71

    Google Scholar 

  • Engel MS, Schultz TR (1997) Phylogeny and behavior in honeybees (Hymenoptera: Apidae). Ann Entomol Soc Am 90:43–53

    Google Scholar 

  • Evans BJ, Supriatna J, Andayani N, Setiadi MI, Cannatella DC, Melnick DJ (2003) Monkeys and toads define areas of endemism on Sulawesi. Evolution 57:1436–1443

    PubMed  Google Scholar 

  • Garnery L, Vautrin D, Cornuet JM, Solignac M (1991) Phylogenetic relationships in the genus Apis inferred from mitochondrial DNA sequence data. Apidologie 22:87–92

    Article  CAS  Google Scholar 

  • Garnery L, Cornuet JM, Solignac M (1992) Evolutionary history of the honeybee Apis mellifera inferred from mitochondrial DNA analysis. Mol Ecol 1:145–154

    Article  CAS  PubMed  Google Scholar 

  • Haddad N, de Miranda JR, Bataena A (2008) Discovery of Apis florea in Aqaba, Jordan. J Apis Res 47:172–173

    Article  Google Scholar 

  • Haddad N, Fuchs S, Hepburn HR, Radloff SE (2009) Apis florea in Jordan: source of the founder population. Apidologie 40:508–512

    Article  Google Scholar 

  • Hadisoesilo S, Raffiudin R, Susanti W, Atmowidi T, Hepburn C, Radloff SE, Fuchs S, Hepburn HR (2008) Morphometric analysis and biogeography of Apis koschevnikovi Enderlein (1906). Apidologie 39:495–503

    Article  Google Scholar 

  • Hall R (2001) Cenozoic reconstructions of SE Asia and the SW Pacific: changing patterns of land and sea. In: Metcalfe I, Smith JMB, Morwood M, Davidson ID (eds) Faunal and floral migrations and evolution in SE Asia-Australasia. A.A. Balkema (Swets & Zeitlinger Publishers), Lisse, pp 35–56

    Google Scholar 

  • Hall HG, Muralidharan K (1989) Evidence from mitochondrial DNA that African honeybees spread as continuous maternal lineages. Nature 339:211–213

    Article  CAS  PubMed  Google Scholar 

  • Hall HG, Smith DR (1991) Distinguishing African and European honeybee matrilines using amplified mitochondrial DNA. Proc Natl Acad Sci 88:4548–4552

    Article  CAS  PubMed  Google Scholar 

  • Heaney LR (1985) Zoogeographic evidence for middle and late Pleistocene land bridges to the Philippine Islands. Mod Quat Res SE Asia 9:127–143

    Google Scholar 

  • Heaney LR (1986) Biogeography of mammals in SE Asia: estimates of rates of colonization, extinction and speciation. Biol J Linn Soc 28:127–165

    Article  Google Scholar 

  • Heaney LR, Walsh JS, Peterson AT (2005) The roles of geological history and colonization abilities in genetic differentiation between mammalian populations in the Philippine archipelago. J Biogeogr 32:229–247

    Article  Google Scholar 

  • Hepburn HR, Radloff SE (2011) Biogeography of the dwarf honeybees, Apis andreniformis and A. florea. Apidologie (in press)

    Google Scholar 

  • Hepburn HR, Smith DR, Radloff SE, Otis GW (2001) Infraspecific categories of Apis cerana: morphometric, allozymal and mtDNA diversity. Apidologie 32:3–23

    Article  CAS  Google Scholar 

  • Hepburn HR, Radloff SE, Otis GW, Fuchs S, Verma LR, Ken T, Chaiyawong T, Tahmasebi G, Ebadi R, Wongsiri S (2005) Apis florea: morphometrics, classification and biogeography. Apidologie 36:359–376

    Article  Google Scholar 

  • Higgs JS, McHale M, Oldroyd BP (2010) A scientific note on a rapid method for the molecular discrimination of Apis andreniformis and A. florea. Apidologie 41:96–98

    Article  CAS  Google Scholar 

  • Hou HY (1983) Vegetation of China with reference to its geographical distribution. Ann Mo Bot Gard 70:509–548

    Article  Google Scholar 

  • Hughes JB, Round PD, Woodruff DS (2003) The Indochinese-Sundaic faunal transition at the Isthmus of Kra: an analysis of resident forest bird species distributions. J Biogeogr 30:569–580

    Article  Google Scholar 

  • Imjongjirak C, Ngewsra L, Pramual C, Insuan S, Pala-Or K, Klinbunga S, Sittipraneed S (2004) Development of a simple and rapid method for typing population origins of the honeybee (Apis cerana) in Thailand. J Apis Res 43:17–20

    CAS  Google Scholar 

  • Insuan S, Deowanish S, Klinbunga S, Sittipraneed S, Sylvester HA, Wongsiri S (2007) Genetic differentiation of the giant honeybee (Apis dorsata) in Thailand analyzed by mitochondrial genes and microsatellites. Biochem Genet 45:345–361

    Article  CAS  PubMed  Google Scholar 

  • Leelamanit W, Neelasaewee S, Boonyom R, Panyim S, Hayashi T, Yasue H, Amano K (2004) The NADH dehydrogenase genes of Apis mellifera, A. cerana, A. dorsata, A. laboriosa and A. florea: sequence comparison and genetic diversity. J Anim Genet 31:3–12

    Google Scholar 

  • Lo N, Gloag RS, Anderson DL, Oldroyd BP (2010) A molecular phylogeny of the genus Apis suggests that the giant honeybee of the Philippines, A. breviligula Maa, and the plains honeybee of southern India, A. indica Fabricius, are valid species. Syst Entomol 35:226–233

    Article  Google Scholar 

  • Lord WG, Nagri SK (1987) Apis florea discovered in Africa. Bee World 68:39–40

    Google Scholar 

  • Maa TC (1953) An inquiry into the systematics of the tribus Apidini or honeybees (Hym.). Treubia 21:525–640

    Google Scholar 

  • Mathew S, Mathew K (1988) The “red” bees of Sabah. Newsl Beek Trop Subtrop 12:10

    Google Scholar 

  • McEvoy MV, Underwood BA (1988) The drone and species status of the Himalayan honeybee, Apis laboriosa (Hymenoptera: Apidae). J Kans Entomol Soc 61:246–249

    Google Scholar 

  • Meixner MD, Arias MC, Sheppard WS (2000) Mitochondrial DNA polymorphisms in honeybee subspecies from Kenya. Apidologie 31:181–190

    Article  CAS  Google Scholar 

  • Merker S, Driller C, Perwitasari-Farajallah D, Pamungkas J, Zischler H (2009) Elucidating geological and biological processes underlying the diversification of Sulawesi tarsiers. Proc Natl Acad Sci 106:8459–8464

    Article  CAS  PubMed  Google Scholar 

  • Mogga J, Ruttner F (1988) Apis florea in Africa: source of the founder population. Bee World 69:100–103

    Google Scholar 

  • Moritz RFA, Hawkins CF (1985) Isolation of mitochondrial DNA of the honeybee (Apis mellifera). Apidologie 16:223–225

    Article  Google Scholar 

  • Moritz RFA, Hawkins CF, Crozier RH, Mackinley AG (1986) A mitochondrial DNA polymorphism in honeybees (Apis mellifera L). Experientia 42:322–324

    Article  CAS  Google Scholar 

  • Moritz C, Dowling TE, Brown WM (1987) Evolution of animal mitochondrial DNA – relevance for population biology and systematics. Ann Rev Ecol Syst 18:269–292

    Article  Google Scholar 

  • Moritz C, Patton JL, Schneider CJ, Smith TB (2000) Diversification of rainforest faunas: an integrated molecular approach. Annu Rev Ecol Syst 31:533–563

    Article  Google Scholar 

  • Moritz RFA, Haddad N, Bataieneh A, Shalmon B, Hefetz A (2009) Invasion of the dwarf honeybee Apis florea into the near East. Biol Invasions 12:1093–1099

    Article  Google Scholar 

  • Moss SJ, Wilson MEJ (1998) Biogeographic implications from the Tertiary palaeogeographic evolution of Sulawesi and Borneo. In: Hall R, Holloway JD (eds) Biogeography and geological evolution of SE Asia. Backhuys, Leiden, pp 165–196

    Google Scholar 

  • Munoz I, Dall’Olio R, Lodesani M, de la Rua P (2009) Population genetic structure of coastal Croatian honeybees (Apis mellifera carnica). Apidologie 40:617–626

    Article  CAS  Google Scholar 

  • Oldroyd BP, Reddy MS, Chapman NC, Thompson GL, Beekman M (2006) Evidence for reproductive isolation between two colour morphs of cavity nesting honeybees (Apis) in south India. Insectes Soc 53:428–434

    Article  Google Scholar 

  • Otis G (1991) A review of the diversity of species within Apis. In: Smith DR (ed) Diversity in the genus Apis. Westview, Boulder, pp 29–49

    Google Scholar 

  • Otis GW (1996) Distributions of recently recognized species of honeybees (Hymenoptera: Apidae; Apis) in Asia. J Kans Entomol Soc 69(Suppl):311–333

    Google Scholar 

  • Otis GW, Hadisoesilo S (1999) Insights into honeybee biology from Apis nigrocincta of Indonesia. In: Hoopingarner R, Connor LJ (eds) Apiculture for the 21st Century. Wicwas, Cheshire, pp 69–79

    Google Scholar 

  • Pamilo P, Viljakainen L, Vihavainen A (2007) Exceptionally high density of NUMTs in the honeybee genome. Mol Biol Evol 24:1340–1346

    Article  CAS  PubMed  Google Scholar 

  • Peng YS, Nasr ME, Locke SJ (1989) Geographical races of Apis cerana Fabricius in China and their distribution – review of recent Chinese publications and a preliminary statistical analysis. Apidologie 20:9–20

    Article  Google Scholar 

  • Pinto MA, Johnston JS, Rubin WL, Coulson RN, Patton JC, Sheppard WS (2003) Identification of Africanized honeybee (Hymenoptera: Apidae) mitochondrial DNA: validation of a rapid polymerase chain reaction-based assay. Ann Entomol Soc Am 96:679–684

    Article  CAS  Google Scholar 

  • Pinto MA, Rubink WL, Coulson RN, Patton JC, Johnston JS (2004) Temporal pattern of Africanization in a feral honeybee population from Texas inferred from mitochondrial DNA. Evolution 58:1047–1055

    PubMed  Google Scholar 

  • Pinto MA, Rubink WL, Patton JC, Coulson RN, Johnston JS (2005) Africanization in the United States: replacement of feral European honeybees (Apis mellifera L.) by an African hybrid swarm. Genetics 170:1653–1665

    Article  CAS  PubMed  Google Scholar 

  • Radloff SE, Hepburn C, Hepburn HR, Fuchs S, Haisoesilo S, Tan K, Engel MS, Kuznetsov V (2010) Population structure and classification of Apis cerana. Apidologie. doi:10.1051/apido/2010008

  • Raffiudin R, Crozier RH (2007) Phylogenetic analysis of honeybee behavioral evolution. Mol Phylogenet Evol 43:543–552

    Article  CAS  PubMed  Google Scholar 

  • Rattanawannee A, Chanchao C, Wongsiri S (2007) Morphometric and genetic variation of small dwarf honeybees Apis andreniformis Smith, 1858 in Thailand. Insect Sci 14:451–460

    Article  CAS  Google Scholar 

  • Rinderer TE, Stelzer JA, Oldroyd BP, Buco SM, Rubink WL (1991) Hybridization between European and Africanized honeybees in the neotropical Yucatan peninsula. Science 253:309–311

    Article  CAS  PubMed  Google Scholar 

  • Roubik DW, Sakagami SF, Kudo I (1985) A note on distribution and nesting of the Himalayan honeybee Apis laboriosa Smith (Hymenoptera: Apidae). J Kans Entomol Soc 58:746–749

    Google Scholar 

  • Ruttner F (1988) Biogeography and taxonomy of honeybees. Springer, Berlin

    Google Scholar 

  • Sakagami SF, Matsumura T, Ito K (1980) Apis laboriosa in Himalaya, the little known world’s largest honeybee (Hymenoptera: Apidae). Insecta Matsumurana 19:44–77

    Google Scholar 

  • Sathiamurthy E, Voris HK (2006) Maps of Holocene sea level transgression and submerged lakes on the Sunda shelf. Nat Hist J Chulalongkorn Univ Suppl 2:1–43

    Google Scholar 

  • Schneider SS, Hoffman GD, Smith DR (2004) The African honeybee: factors contributing to a successful biological invasion. Annu Rev Entomol 49:351–376

    Article  CAS  Google Scholar 

  • Shaibi T, Munoz I, Dall’Olio R, Lodesani M, de la Rua P, Moritz RFA (2009) Apis mellifera evolutionary lineages in northern Africa: Libya, where orient meets occident. Insectes Soc 56:293–300

    Article  Google Scholar 

  • Sharma V, Thakur ML (1999) Morphometric characterization of giant honeybee Apis dorsata Fab. (Hymenoptera: Apidae) from Doon Valley. Ann For 7:125–135

    Google Scholar 

  • Sheppard WS, Smith DR (2000) Identification of African-derived bees in the Americas: a survey of methods. Ann Entomol Soc Am 93:159–176

    Article  CAS  Google Scholar 

  • Sheppard WS, Rinderer TE, Mazzoli JA, Stelzer A, Shimanuki H (1991a) Gene flow between African-derived and European derived honeybee populations in Argentina. Nature 349:782–784

    Article  Google Scholar 

  • Sheppard WS, Soares AEE, Dejong D, Shimanuki H (1991b) Hybrid status of honeybee populations near the historic origin of Africanization in Brazil. Apidologie 22:643–652

    Article  Google Scholar 

  • Sheppard WS, Rinderer TE, Meixner MD, Yoo HR, Stelzer JA, Schiff NM, Kamel SM, Krell R (1996) Hinfl variation in mitochondrial DNA of old world honey bee subspecies. J Hered 87:35–40

    CAS  Google Scholar 

  • Sihanuntavong D, Sittipraneed S, Klinbunga S (1999) Mitochondrial DNA diversity and population structure of the honeybee, Apis cerana, in Thailand. J Apic Res 38:211–219

    CAS  Google Scholar 

  • Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene seqeunces and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am 87:651–701

    CAS  Google Scholar 

  • Sittipraneed S, Sihanuntavong D, Klinbunga S (2001) Genetic differentiation of the honeybee (Apis cerana) in Thailand revealed by polymorphism of a large subunit of mitochondrial ribosomal DNA. Insectes Soc 48(3):266–272

    Article  Google Scholar 

  • Smith F (1871) Descriptions of some new insects collected by Dr Anderson during the expedition to Yunnan. Proc Zool Soc Lond 1871:244–249

    Google Scholar 

  • Smith DR (1988) Mitochondrial DNA polymorphisms in five Old World subspecies of the honeybee and in New World hybrid populations. In: Needham G, Page RE (eds) In: Proceedings of the international conference Africanized honeybees and bee mites. Ellis Horwood, Chichester, pp 303–312

    Google Scholar 

  • Smith DR (1991a) African bees in the Americas – insights from biogeography and genetics. Trends Ecol Evol 6:17–21

    Article  CAS  PubMed  Google Scholar 

  • Smith DR (1991b) Mitochondrial DNA and honeybee biogeography. In: Smith DR (ed) Diversity in the genus Apis. Westview, Boulder, pp 131–176

    Google Scholar 

  • Smith DR, Brown WM (1988) Polymorphisms in mitochondrial DNA of European and Africanized honeybees (Apis mellifera). Experientia 44(3):257–260

    Article  CAS  PubMed  Google Scholar 

  • Smith DR, Brown WM (1990) Restriction endonuclease cleavage site and length polymorphisms in mitochondrial DNA of Apis mellifera mellifera and A. m. carnica (Hymenoptera: Apidae). Ann Entomol Soc Am 83:81–88

    CAS  Google Scholar 

  • Smith DR, Hagen RH (1996) The biogeography of Apis cerana as revealed by mitochondrial DNA sequence data. J Kans Entomol Soc 69:294–310

    Google Scholar 

  • Smith DR, Hagen RH (1999) Phylogeny and biogeography of Apis cerana subspecies: testing alternative hypotheses. In: Hoopingarner R, Connor L (eds) Apiculture for the 21st Century. Wicwas, Cheshire, pp 60–68

    Google Scholar 

  • Smith DR, Taylor OR, Brown WM (1989) Neotropical Africanized honeybees have African mitochondrial DNA. Nature 339:213–215

    Article  CAS  PubMed  Google Scholar 

  • Smith DR, Palopoli MF, Taylor BR, Garnery L, Cornuet JM, Solignac M, Brown M (1991) Geographical overlap of 2 mitochondrial genomes in Spanish honeybees (Apis mellifera iberica). J Hered 82:96–100

    CAS  PubMed  Google Scholar 

  • Smith DR, Slaymaker A, Palmer M, Kaftanoglu O (1997) Turkish honeybees belong to the east Mediterranean mitochondrial lineage. Apidologie 28:269–274

    Article  CAS  Google Scholar 

  • Smith DR, Villafuerte L, Otis G, Palmer MR (2000) Biogeography of Apis cerana F. and A. nigrocincta Smith: insights from mtDNA studies. Apidologie 31:65–279

    Article  Google Scholar 

  • Smith DR, Palmer MR, Otis G, Damus M (2003) Mitochondrial DNA and AFLP markers support species status of Apis nigrocincta. Insectes Soc 50:185–190

    Article  Google Scholar 

  • Smith DR, Warrit N, Hepburn HR (2004) Apis cerana from Myanmar (Burma): unusual distribution of mitochondrial lineages. Apidologie 35:637–644

    Article  CAS  Google Scholar 

  • Smith DR, Warrit N, Otis G, Thai PH, Tam DQ (2005) A scientific note on high variation in the non-coding mitochondrial sequences of Apis cerana from South East Asia. J Apic Res 44:197–198

    Google Scholar 

  • Songram O, Sittipraneed S, Klinbunga S (2006) Mitochondrial DNA diversity and genetic differentiation of the honeybee (Apis cerana) in Thailand. Biochem Genet 44:256–269

    Article  CAS  PubMed  Google Scholar 

  • Takahashi J, Nakamura J, Sasaki M, Tingek S, Akimoto S (2002) New haplotypes for the non-coding region of mitochondrial DNA in cavity-nesting honeybees Apis koschevnikovi and Apis nuluensis. Apidologie 33:25–31

    Article  CAS  Google Scholar 

  • Takahashi J, Yoshida T, Takagi T, Akimoto S, Woo K, Deowanish S, Hepburn R, Nakamura J, Matsuka J (2007) Geographic variation in the Japanese islands of Apis cerana japonica and in A. cerana populations bordering its geographic range. Apidologie 38:335–340

    Article  CAS  Google Scholar 

  • Tan K, Meixner MD, Fuchs S, Zhang X, He SY, Kandemir I, Sheppard WS, Koeniger N (2006) Geographic distribution of the eastern honeybee, Apis cerana (Hymenoptera: Apidae) across ecological zones in China: morphological and molecular analyses. Syst Biodivers 4:473–482

    Article  Google Scholar 

  • Tan K, Warrit N, Smith DR (2007) Mitochondrial DNA diversity of Chinese Apis cerana. Apidologie 38:238–246

    Article  CAS  Google Scholar 

  • Tanaka H, Roubik DW, Kato M, Liew F, Gunsalam G (2001) Phylogenetic position of Apis nuluensis of northern Borneo and phylogeography of A. cerana as inferred from mitochondrial DNA sequences. Insectes Soc 48:44–51

    Article  Google Scholar 

  • Tanaka H, Suka T, Kahono S, Samejima H, Mohamed M, Roubik DW (2003) Mitochondrial variation and genetic differentaition in honeybees (Apis cerana, A. koschevnikovi and A. dorsata) of Borneo. Tropics 13:107–117

    Article  Google Scholar 

  • Tingek S, Mardan M, Rinderer TE, Koeniger N, Koeniger G (1988) Rediscovery of Apis vechti (Maa, 1953) – the Saban honeybee. Apidologie 19:97–102

    Article  Google Scholar 

  • Tingek S, Koeniger N, Koeniger G (1996) Description of a new cavity dwelling species of Apis (Apis nuluensis) from Sabah, Borneo with notes on its occurrence and reproductive biology (Hymenoptera: Apoidea; Apini). Sencken Biol 76:115–119

    Google Scholar 

  • Trung LQ, Dung PX, Ngan TX (1996) A scientific note on first report of Apis laboriosa F Smith, 1871 in Vietnam. Apidologie 27:487–488

    Article  Google Scholar 

  • Voris HK (2000) Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations. J Biogeogr 27:1153–1167

    Article  Google Scholar 

  • Walton C, Butlin RK, Monk KA (1997) A phylogeny for grasshoppers of the genus Chitaura (Orthoptera: Acrididae) from Sulawesi, Indonesia, based on mitochondrial DNA sequence data. Biol J Linn Soc 62:365–382

    Google Scholar 

  • Warrit N, Smith DR, Lekprayoon C (2006) Genetic subpopulations of Varroa mites and their Apis cerana hosts in Thailand. Apidologie 37:19–30

    Article  CAS  Google Scholar 

  • Whitfield JB, Cameron SA (1998) Hierarchical analysis of variation in the mitochondrial 16S rRNA gene among Hymenoptera. Mol Biol Evol 15:1728–1743

    CAS  PubMed  Google Scholar 

  • Whitmore TC (1984) Tropical rain forests of the Far East, 2nd edn. Oxford Scientific Publications, Clarendon, Oxford

    Google Scholar 

  • Willis LG, Winston ML, Honda BM (1992) Phylogenetic relationships in the honeybee (genus Apis) as determined by the sequence of the cytochrome oxidase II region of mitochondrial DNA. Mol Phylogenet Evol 1:169–178

    Article  CAS  PubMed  Google Scholar 

  • Wilson MEJ, Moss SJ (1999) Cenozoic palaeogeographic evolution of Sulawesi and Borneo. Palaeogeogr Palaeoclimatol Palaeoecol 145:303–337

    Article  Google Scholar 

  • Woodruff DS (2003) Neogene marine transgressions, palaeogeography and biogeographic transitions on the Thai-Malay Peninsula. J Biogeogr 30:551–567

    Article  Google Scholar 

  • Woodruff DS, Turner LM (2009) The Indochinese-Sundaic zoogeographic transition: a description and analysis of terrestrial mammal species distributions. J Biogeogr 36:803–821

    Article  Google Scholar 

  • Wright JW, Spolsky C, Brown WM (1983) The origin of the parthenogenetic lizard Cnemidophorus laredoensis inferred from mitochondrial DNA analysis. Herpetologica 39:410–416

    Google Scholar 

  • Yang GH (1984a) The survey of the resource of the Chinese honeybee. Zhongguo Yangfeng 3:4–7 [in Chinese]

    Google Scholar 

  • Yang GH (1984b) The survey of the resource of the Chinese honeybee II. Zhongguo Yangfeng 6:16–19 [in Chinese]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deborah R. Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Smith, D.R. (2011). Asian Honeybees and Mitochondrial DNA. In: Hepburn, H., Radloff, S. (eds) Honeybees of Asia. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16422-4_4

Download citation

Publish with us

Policies and ethics