Skip to main content

Towards the Formulation of Effective General Shell Elements

  • Chapter
  • First Online:
The Finite Element Analysis of Shells - Fundamentals

Part of the book series: Computational Fluid and Solid Mechanics ((COMPFLUID))

  • 4084 Accesses

Abstract

In Chapter 7 we discussed the difficulties encountered in the formulation of reliable and effective shell elements. These difficulties are summarized in the synopsis of Figure 8.1 in correspondence with the various types of shell asymptotic behaviors that can be encountered, as addressed in Chapter 5. The objective of the present chapter is to propose some strategies to evaluate shell finite element discretizations in the search for improved schemes. With general analytical proofs not available for the convergence behavior, the numerical assessment is a key ingredient in these strategies. As an example we present the formulation of the MITC shell elements and demonstrate how the numerical assessment of these elements can be performed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Lee, P.S., & Bathe, K.J. (2004). Development of MITC isotropic triangular shell finite elements. Comput. & Structures, 82, 945-962.

    Article  Google Scholar 

  • Chapelle, D., & Bathe, K.J. (1993). The inf-sup test. Comput. & Structures, 47(4/5), 537-545.

    Article  MATH  MathSciNet  Google Scholar 

  • Kim, D.N., & Bathe, K.J. (2008). A 4-node 3D-shell element to model shell surface tractions and incompressible behavior. Comput. & Structures, 86(21-22), 2027-2041.

    Article  Google Scholar 

  • Malinen, M. (2001). On the classical shell model underlying bilinear degenerated shell finite elements. Internat. J. Numer. Methods Engrg., 52, 389-416.

    Article  MATH  Google Scholar 

  • Chapelle, D., & Paris Suarez, I. (2008). Detailed reliability assessment of triangular MITC elements for thin shells. Comput. & Structures, 86, 2192-2202. Doi:10.1016/j.compstruc.2008.06.001.

    Article  Google Scholar 

  • Bathe, K.J., & Lee, P.S. (201x). Measuring the convergence behavior of shell analysis schemes. In preparation.

    Google Scholar 

  • Malinen, M., & Pitkäranta, J. (2000). A benchmark study of reduced-strain shell finite elements: quadratic schemes. Internat. J. Numer. Methods Engrg., 48, 1637-1671.

    Article  MATH  MathSciNet  Google Scholar 

  • Pitkäranta, J., Matache, A.M., & Schwab, C. (2001). Fourier mode analysis of layers in shallow shell deformations. Comput. Methods Appl. Mech. Engrg., 190, 2943-2975.

    Article  MATH  Google Scholar 

  • Lee, P.S., & Bathe, K.J. (2010). The quadratic MITC plate and MITC shell elements in plate bending. Advances in Engineering Software, in Press.

    Google Scholar 

  • Bathe, K.J. (1996). Finite Element Procedures. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Havu, V., & Pitkäranta, J. (2002). Analysis of a bilinear finite element for shallow shells. I: Approximation of inextensional deformations. Math. Comp., 71, 923-943.

    Article  MATH  MathSciNet  Google Scholar 

  • Bucalem, M.L., & Bathe, K.J. (1993). Higher-order MITC general shell elements. Internat. J. Numer. Methods Engrg., 36, 3729-3754.

    Article  MATH  MathSciNet  Google Scholar 

  • Lee, P.S., Noh, H.C., & Bathe, K.J. (2007). Insight into 3-node triangular shell finite elements: the effect of element isotropy and mesh patterns. Comput. & Structures, 85, 404-418.

    Article  Google Scholar 

  • Bathe, K.J., Chapelle, D., & Lee, P.S. (2003a). A shell problem `highly Sensitive’ to thickness changes. Internat. J. Numer. Methods Engrg., 57, 1039-1052.

    Article  MATH  Google Scholar 

  • Pitkäranta, J., Leino, Y., Ovaskainen, O., & Piila, J. (1995). Shell deformation states and the finite element method: a benchmark study of cylindrical shells. Comput. Methods Appl. Mech. Engrg., 128, 81-121.

    Article  MATH  MathSciNet  Google Scholar 

  • Bathe, K.J. (2009). The finite element method. In B.Wah (Ed.) Encyclopedia of Computer Science and Engineering, (pp. 1253-1264). John Wiley & Sons.

    Google Scholar 

  • Karamian, P., Sanchez-Hubert, J., & Sanchez-Palencia, E. (2000). A model problem for boundary layers of thin elastic shells. M2AN Math. Model. Numer. Anal., 34(1), 1-30.

    Article  MATH  MathSciNet  Google Scholar 

  • Dvorkin, E.N., & Bathe, K.J. (1984). A continuum mechanics based fournode shell element for general non-linear analysis. Eng. Comput., 1, 77-88.

    Article  Google Scholar 

  • Ciarlet, P.G. (1978). The Finite Element Method for Elliptic Problems. Amsterdam: North-Holland.

    MATH  Google Scholar 

  • Chapelle, D., & Bathe, K.J. (1998). Fundamental considerations for the finite element analysis of shell structures. Comput. & Structures, 66, 19-36, 711-712.

    Article  MATH  Google Scholar 

  • Betsch, P., & Stein, E. (1995). An assumed strain approach avoiding artificial thickness straining for a non-linear 4-node shell element. Commun. Numer. Meth. Engng., 11, 899-909.

    Article  MATH  Google Scholar 

  • Chapelle, D. (2001). Some new results and current challenges in the finite element analysis of shells. In Acta Numerica, (pp. 215-250). Cambridge: Cambridge University Press.

    Google Scholar 

  • Bathe, K.J., Hiller, J.F., & Zhang, H. (2002). On the finite element analysis of shells and their full interaction with Navier-Stokes fluid flows. In B. Topping, & Z. Bittnar (Eds.) Computational Structures Technology. Edinburgh: Civil-Comp Press.

    Google Scholar 

  • Arnold, D.N., & Falk, R.S. (1996). Asymptotic analysis of the boundary layer for the Reissner-Mindlin plate model. SIAM J. Math. Anal., 27(2), 486-514.

    Article  MATH  MathSciNet  Google Scholar 

  • Beirão da Veiga, L., Chapelle, D., & Paris Suarez, I. (2007). Towards improving the MITC6 triangular shell element. Comput. & Structures, 85, 1589-1610.

    Article  Google Scholar 

  • Dauge, M., & Yosibash, Z. (2000). Boundary layer realization in thin elastic 3D domains and 2D hierarchic plate models. Internat. J. Solids Structures, 37, 2443-2471.

    Article  MATH  Google Scholar 

  • Niemi, A.H. (2009). A bilinear shell element based on a refied shallow shell model. Internat. J. Numer. Methods Engrg., 81(4), 485-512.

    MathSciNet  Google Scholar 

  • Bathe, K.J., & Dvorkin, E.N. (1986). A formulation of general shell elements|the use of mixed interpolation of tensorial components. Internat. J. Numer. Methods Engrg., 22, 697-722.

    Article  MATH  Google Scholar 

  • Bathe, K.J., Bucalem, M.L., & Brezzi, F. (1990). Displacement and stress convergence of our MITC plate bending elements. Eng. Comput., 7, 291-302.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chapelle, D., Bathe, KJ. (2011). Towards the Formulation of Effective General Shell Elements. In: The Finite Element Analysis of Shells - Fundamentals. Computational Fluid and Solid Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16408-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16408-8_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16407-1

  • Online ISBN: 978-3-642-16408-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics