Advertisement

Influence of the Thickness in the Finite Element Approximation

  • Dominique Chapelle
  • Klaus-Jürgen Bathe
Chapter
  • 3.4k Downloads
Part of the Computational Fluid and Solid Mechanics book series (COMPFLUID)

Abstract

The influence of the thickness in the finite element analysis of thin structures is a crucial issue, as it is deeply interrelated with the motivation of modeling a 3D continuum as a shell in engineering. Why, indeed, should we use shell models and finite elements – instead of 3D models – to analyze a given structure? The answer to this question seems obvious: firstly, the use of a shell model is to reduce the analysis cost, and secondly, the use of the shell model is to reduce the complexity of the analysis including the interpretation of the results for engineering design. Clearly, the motivation to use shell models rests upon the fact that shell mathematical models and finite elements incorporate kinematical assumptions pertaining to the displacement distribution across the thickness of the structure, see previous chapters.

Keywords

Shell Model Timoshenko Beam Mixed Formulation Finite Element Approximation Nite Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Yosida, K. (1980). Functional Analysis. Berlin, New York: Springer-Verlag, 6th ed.zbMATHGoogle Scholar
  2. Bramble, J.H., & Sun, T. (1998). A locking-free finite element method for Naghdi shells. J. Comput. Appl. Math., 89, 119-133.CrossRefzbMATHMathSciNetGoogle Scholar
  3. Sanchez-Hubert, J., & Sanchez-Palencia, E. (1997). Coques Elastiques Minces - Propriétés Asymptotiques. Paris: Masson.zbMATHGoogle Scholar
  4. Kardestuncer, H., & Norrie, D.H. (Eds.) (1987). Finite Element Handbook. New York: McGraw-Hill.zbMATHGoogle Scholar
  5. Brezzi, F., Fortin, M., & Stenberg, R. (1991). Error analysis of mixedinterpolated elements for Reissner-Mindlin plates. Math. Models Methods Appl. Sci., 1(2), 125-151.CrossRefzbMATHMathSciNetGoogle Scholar
  6. Chapelle, D. (1993). Une formulation mixte de plaques où l’effort tranchant est approché dans son espace naturel. Research Report 2248, INRIA.Google Scholar
  7. Ladyzhenskaya, O.A. (1969). The Mathematical Theory of Viscous Incompressible Flow. New York: Gordon and Breach.zbMATHGoogle Scholar
  8. Pitkäranta, J., Matache, A.M., & Schwab, C. (2001). Fourier mode analysis of layers in shallow shell deformations. Comput. Methods Appl. Mech. Engrg., 190, 2943-2975.CrossRefzbMATHGoogle Scholar
  9. Choï, D., Palma, F.J., Sanchez-Palencia, E., & Vilariño, M.A. (1998). Membrane locking in the finite element computation of very thin elastic shells. M2AN Math. Model. Numer. Anal., 32(2), 131-152.zbMATHGoogle Scholar
  10. Bathe, K.J., & Dvorkin, E.N. (1985). A four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation. Internat. J. Numer. Methods Engrg., 21, 367-383.CrossRefzbMATHGoogle Scholar
  11. Chinosi, C., & Lovadina, C. (1995). Numerical analysis of some mixed finite element methods for Reissner-Mindlin plates. Comput. Mech., 16, 36-44.CrossRefzbMATHGoogle Scholar
  12. Lee, P.S., & Bathe, K.J. (2010). The quadratic MITC plate and MITC shell elements in plate bending. Advances in Engineering Software, in Press.Google Scholar
  13. Bathe, K.J. (1996). Finite Element Procedures. Englewood Cliffs: Prentice Hall.Google Scholar
  14. Peisker, P., & Braess, D. (1992). Uniform convergence of mixed interpolated elements for Reissner-Mindlin plates. M2AN Math. Model. Numer. Anal., 26(5), 557-574.zbMATHMathSciNetGoogle Scholar
  15. Lyly, M., & Stenberg, R. (1999). Stabilized finite element methods for Reissner-Mindlin plates. Research Report 4-1999, Universität Innsbruck, Institut für Mathematik und Geometrie.Google Scholar
  16. Brezzi, F., & Fortin, M. (1991). Mixed and Hybrid Finite Element Methods. New York: Springer-Verlag.zbMATHGoogle Scholar
  17. Brezzi, F., Bathe, K.J., & Fortin, M. (1989). Mixed-interpolated elements for Reissner-Mindlin plates. Internat. J. Numer. Methods Engrg., 28, 1787-1801.CrossRefzbMATHMathSciNetGoogle Scholar
  18. Iosilevich, A., Bathe, K.J., & Brezzi, F. (1997). On evaluating the inf-sup condition for plate bending elements. Internat. J. Numer. Methods Engrg., 40, 3639-3663.CrossRefzbMATHMathSciNetGoogle Scholar
  19. Arnold, D.N., & Brezzi, F. (1993). Some new elements for the Reissner-Mindlin plate model. In J. Lions, & C. Baiocchi (Eds.) Boundary Value Problems for Partial Diérential Equations and Applications, (pp. 287-292). Paris: Masson.Google Scholar
  20. Dvorkin, E.N., & Bathe, K.J. (1984). A continuum mechanics based fournode shell element for general non-linear analysis. Eng. Comput., 1, 77-88.CrossRefGoogle Scholar
  21. Ciarlet, P.G. (1978). The Finite Element Method for Elliptic Problems. Amsterdam: North-Holland.zbMATHGoogle Scholar
  22. Temam, R. (1977). Navier-Stokes Equations. Amsterdam: North-Holland.zbMATHGoogle Scholar
  23. Paumier, J.C. (1992). On the locking phenomenon for a linearly elastic clamped plate. Research Report 76, L.M.C., Université Grenoble I.Google Scholar
  24. Pitkäranta, J. (1992). The problem of membrane locking in finite element analysis of cylindrical shells. Numer. Math., 61, 523-542.CrossRefzbMATHMathSciNetGoogle Scholar
  25. Rudin, W. (1991). Functional Analysis. New York: McGraw-Hill, 2nd ed.zbMATHGoogle Scholar
  26. Dauge, M., & Yosibash, Z. (2000). Boundary layer realization in thin elastic 3D domains and 2D hierarchic plate models. Internat. J. Solids Structures, 37, 2443-2471.CrossRefzbMATHGoogle Scholar
  27. Bathe, K.J., & Brezzi, F. (1985). On the convergence of a four-node plate bending element based on Mindlin-Reissner plate theory and a mixed interpolation. In J. Whiteman (Ed.) The Mathematics of Finite Elements and Applications V, (pp. 491-503). New York: Academic Press.Google Scholar
  28. Bathe, K.J., & Dvorkin, E.N. (1986). A formulation of general shell elements|the use of mixed interpolation of tensorial components. Internat. J. Numer. Methods Engrg., 22, 697-722.CrossRefzbMATHGoogle Scholar
  29. Bathe, K.J., Bucalem, M.L., & Brezzi, F. (1990). Displacement and stress convergence of our MITC plate bending elements. Eng. Comput., 7, 291-302.CrossRefGoogle Scholar
  30. Brezzi, F. (1974). On the existence, uniqueness and approximation of saddlepoint problems arising from Lagrangian multipliers. R.A.I.R.O., Anal. Numér., 8, 129-151.MathSciNetGoogle Scholar
  31. Hughes, T.J.R., & Franca, L.P. (1988). A mixed finite element formulation for Reissner-Mindlin plate theory: uniform convergence of all higher-order spaces. Comput. Methods Appl. Mech. Engrg., 67, 223-240.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Dominique Chapelle
    • 1
  • Klaus-Jürgen Bathe
    • 2
  1. 1.INRIA Paris-RocquencourtLe ChesnayFrance
  2. 2.Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations