Displacement-Based Shell Finite Elements

  • Dominique Chapelle
  • Klaus-Jürgen Bathe
Part of the Computational Fluid and Solid Mechanics book series (COMPFLUID)


In this chapter, we describe and analyze the main strategies that have been proposed and used to formulate displacement-based finite element procedures for shells. By displacement-based we mean that the finite element solution is obtained by directly applying the variational principle in the finite element space which discretizes the space of admissible displacements for the structure. In particular, this implies that no “numerical trick” – such as reduced integration – is used in the formulation.


Rotation Vector Nite Element Consistency Error Interpolation Estimate Hyperbolic Paraboloid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Kim, D.N., & Bathe, K.J. (2008). A 4-node 3D-shell element to model shell surface tractions and incompressible behavior. Comput. & Structures, 86(21-22), 2027-2041.CrossRefGoogle Scholar
  2. Zienkiewicz, O.C., & Taylor, R.L. (1989/1991). The Finite Element Method, vol. 1&2. London: McGraw Hill, 4th ed.Google Scholar
  3. Chapelle, D. (1997). A locking-free approximation of curved rods by straight beam elements. Numer. Math., 77, 299-322.CrossRefzbMATHMathSciNetGoogle Scholar
  4. Ciarlet, P.G. (1978). The Finite Element Method for Elliptic Problems. Amsterdam: North-Holland.zbMATHGoogle Scholar
  5. Lee, P.S., & Bathe, K.J. (2005). Insight into finite element shell discretizations by use of the “basic shell mathematical model”. Comput. & Structures, 83, 69-90.CrossRefGoogle Scholar
  6. Destuynder, P., & Salaün, M. (1998). Approximation of shell geometry for nonlinear analysis. Comput. Methods Appl. Mech. Engrg., 156, 111-148.CrossRefzbMATHMathSciNetGoogle Scholar
  7. Akian, J.L., & Sanchez-Palencia, E. (1992). Approximation de coques élastiques minces par facettes planes. Phénomènes de blocage membranaire. C. R. Acad. Sci. Paris, t.315, 363-369. Série I.zbMATHMathSciNetGoogle Scholar
  8. Bernadou, M. (1996). Finite Element Methods for Thin Shell Problems. New York: John Wiley & Sons.zbMATHGoogle Scholar
  9. Carrive, M., Le Tallec, P., & Mouro, J. (1995). Approximation par éléments fiis d’un modéle de coques géométriquement exact. Revue Européenne des Eléments Finis, 4(5-6), 633-662.zbMATHGoogle Scholar
  10. Ahmad, S., Irons, B.M., & Zienkiewicz, O.C. (1970). Analysis of thick and thin shell structures by curved finite elements. Internat. J. Numer. Methods Engrg., 2, 419-451.CrossRefGoogle Scholar
  11. Batoz, J.L., Bathe, K.J., & Ho, L.W. (1980). A study of three-node triangular plate bending elements. Internat. J. Numer. Methods Engrg., 15(2), 1771-1812.CrossRefzbMATHGoogle Scholar
  12. Ciarlet, P.G. (1976). Conforming finite element methods for the shell problem. In J. Whiteman (Ed.) Mathematics of Finite Elements and Applications II, (pp. 105-123). London: Academic Press.Google Scholar
  13. Bathe, K.J. (1996). Finite Element Procedures. Englewood Cliffs: Prentice Hall.Google Scholar
  14. Frey, P.J., & George, P.L. (2000). Mesh Generation. Oxford: HERMES Science Publishing.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Dominique Chapelle
    • 1
  • Klaus-Jürgen Bathe
    • 2
  1. 1.INRIA Paris-RocquencourtLe ChesnayFrance
  2. 2.Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations