Abstract
Doors are important landmarks for robot self-localization and navigation in indoor environments. Existing algorithms of door detection are often limited for restricted environments. They do not consider the diversity and variety of doors. In this paper we present a camera- and laser-based approach, which allows finding more than 72% doors with a false- positive rate of 0.008 in static testdata. By using different door perspectives form a moving robot, we detect more than 90% of the doors with a very low false detection rate.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Anguelov, D., Koller, D., Parker, E., Thrun, S.: Detecting and modeling doors with mobile robots. In: Proceedings of the IEEE International Conference on Robotics and Automation, ICRA (2004)
Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)
Chen, Z., Birchfield, S.T.: Visual detection of lintel-occluded doors from a singel image. IEEE Computer Society Workshop on Visual Localization for Mobile Platforms 1(1), 1–8 (2008)
Collett, T.H.J., MacDonald, B.A., Gerkey, B.: Player 2.0: Toward a practical robot programming framework. In: Australasian Conference on Robotics and Automation, Sydney (2005)
Freund, Y., Schapire, R.E.: A short introduction to boosting. J. Japan. Soc. for Artif. Intel. 14(5), 771–780 (1999)
Murillo, A.C., Košecká, J., Guerrero, J.J., Sagüés, C.: Visual door detection integrating appearance and shape cues. Robot. Auton. Syst. 5
Neira, J., Trados, J.D.: Computer vision. In: Universidad de Zaragoza, Zaragoza, Spain (2008)
Swain, M., Ballard, D.H.: Color indexing. International Journal of Computer Vision 1(1), 11–32 (1991)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hensler, J., Blaich, M., Bittel, O. (2010). Real-Time Door Detection Based on AdaBoost Learning Algorithm. In: Gottscheber, A., Obdržálek, D., Schmidt, C. (eds) Research and Education in Robotics - EUROBOT 2009. EUROBOT 2009. Communications in Computer and Information Science, vol 82. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16370-8_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-16370-8_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-16369-2
Online ISBN: 978-3-642-16370-8
eBook Packages: Computer ScienceComputer Science (R0)