Skip to main content

Limitation on the Rate of Families of Locally Testable Codes

  • Chapter
Property Testing

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6390))

Abstract

This paper describes recent results which revolve around the question of the rate attainable by families of error correcting codes that are locally testable. Emphasis is placed on motivating the problem of proving upper bounds on the rate of these codes and a number of interesting open questions for future research are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arora, S., Safra, S.: Probabilistic checking of proofs: A new characterization of NP. Journal of the ACM 45(1), 70–122 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and the hardness of approximation problems. Journal of the ACM 45(3), 501–555 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dinur, I.: The PCP theorem by gap amplification. Journal of the ACM 54(3), 12:1–12:44 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to learning and approximation. J. ACM 45(4), 653–750 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Goldreich, O.: Short locally testable codes and proofs (survey). Electronic Colloquium on Computational Complexity (ECCC) (014) (2005)

    Google Scholar 

  6. Trevisan, L.: Some applications of coding theory in computational complexity. Quaderni di Matematica 13, 347–424 (2004)

    MathSciNet  MATH  Google Scholar 

  7. MacWilliams, F., Sloane, N.: The theory of error-correcting codes. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  8. Ben-Sasson, E., Goldreich, O., Sudan, M.: Bounds on 2-query codeword testing. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.) RANDOM 2003 and APPROX 2003. LNCS, vol. 2764, pp. 216–227. Springer, Heidelberg (2003)

    Google Scholar 

  9. Babai, L., Shpilka, A., Stefankovic, D.: Locally testable cyclic codes. IEEE Transactions on Information Theory 51(8), 2849–2858 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ben-Sasson, E., Guruswami, V., Kaufman, T., Sudan, M., Viderman, M.: Locally testable codes require redundant testers. In: CCC 2009: Proceedings of the 2009 24th Annual IEEE Conference on Computational Complexity, Washington, DC, USA, pp. 52–61. IEEE Computer Society, Los Alamitos (2009)

    Chapter  Google Scholar 

  11. Bellare, M., Goldreich, O., Sudan, M.: Free bits, PCPs, and nonapproximability—towards tight results. SIAM Journal on Computing 27(3), 804–915 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Meir, O.: On the efficiency of non-uniform pcpp verifiers. Electronic Colloquium on Computational Complexity (ECCC) 15(064) (2008)

    Google Scholar 

  13. Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applications to numerical problems. In: STOC, pp. 73–83. ACM, New York (1990)

    Google Scholar 

  14. Bellare, M., Coppersmith, D., Hastad, J., Kiwi, M., Sudan, M.: Linearity testing in characteristic two. IEEE Transactions on Information Theory 42(6), 1781–1795 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Babai, L., Fortnow, L., Levin, L., Szegedy, M.: Checking computations in polylogarithmic time. In: Proceedings of the Twenty-third Annual ACM Symposium on Theory of Computing, pp. 21–32. ACM, New York (1991)

    Google Scholar 

  16. Raz, R., Safra, S.: A sub-constant error-probability low-degree test, and a sub-constant error-probability PCP characterization of NP. In: Proceedings of the Twenty-ninth Annual ACM Symposium on Theory of Computing, pp. 475–484. ACM, New York (1997)

    Google Scholar 

  17. Arora, S., Sudan, M.: Improved low-degree testing and its applications. Combinatorica 23(3), 365–426 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Alon, N., Kaufman, T., Krivelevich, M., Litsyn, S., Ron, D.: Testing reed-muller codes. IEEE Transactions on Information Theory 51(11), 4032–4039 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kaufman, T., Ron, D.: Testing polynomials over general fields. SIAM J. Comput. 36(3), 779–802 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Samorodnitsky, A.: Low-degree tests at large distances. In: Johnson, D.S., Feige, U. (eds.) STOC, pp. 506–515. ACM, New York (2007)

    Google Scholar 

  21. Kaufman, T., Sudan, M.: Algebraic property testing: the role of invariance. In: Ladner, R.E., Dwork, C. (eds.) STOC, pp. 403–412. ACM, New York (2008)

    Google Scholar 

  22. Grigorescu, E., Kaufman, T., Sudan, M.: 2-transitivity is insufficient for local testability. In: IEEE Conference on Computational Complexity, pp. 259–267. IEEE Computer Society, Los Alamitos (2008)

    Google Scholar 

  23. Grigorescu, E., Kaufman, T., Sudan, M.: Succinct representation of codes with applications to testing. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX–RANDOM 2009. LNCS, vol. 5687, pp. 534–547. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  24. Ben-Sasson, E., Sudan, M.: Limits on the rate of locally testable affine-invariant codes. Electronic Colloquium on Computational Complexity (ECCC) (108) (2010)

    Google Scholar 

  25. Sudan, M.: Invariance in Property Testing. ECCC, TR10-051 (2010)

    Google Scholar 

  26. Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.P.: Robust PCPs of proximity, shorter PCPs, and applications to coding. SIAM J. Comput. 36(4), 889–974 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Dinur, I., Reingold, O.: Assignment testers: Towards a combinatorial proof of the PCP theorem. SIAM J. Comput. 36(4), 975–1024 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Meir, O.: Combinatorial construction of locally testable codes. SIAM J. Comput. 39(2), 491–544 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ben-Sasson, E., Sudan, M.: Robust locally testable codes and products of codes. Random Struct. Algorithms 28(4), 387–402 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Moshkovitz, D., Raz, R.: Two-query pcp with subconstant error. J. ACM 57(5) (2010)

    Google Scholar 

  31. Dinur, I., Harsha, P.: Composition of low-error 2-query pcps using decodable pcps. In: FOCS, pp. 472–481. IEEE Computer Society, Los Alamitos (2009)

    Google Scholar 

  32. Kaufman, T., Sudan, M.: Sparse random linear codes are locally decodable and testable. In: FOCS, pp. 590–600. IEEE Computer Society, Los Alamitos (2007)

    Google Scholar 

  33. Kopparty, S., Saraf, S.: Local list-decoding and testing of random linear codes from high error. In: Schulman, L.J. (ed.) STOC, pp. 417–426. ACM, New York (2010)

    Google Scholar 

  34. Ben-Sasson, E., Viderman, M.: Low rate is insufficient for local testability. In: Shaltiel, R. (ed.) Proc. 14th Intl. Workshop on Randomization and Computation - RANDOM 2010 (September 2010)

    Google Scholar 

  35. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended abstract). In: STOC, pp. 723–732. ACM, New York (1992)

    Google Scholar 

  36. Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–1298 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. Barak, B., Goldreich, O.: Universal arguments and their applications. SIAM J. Comput. 38(5), 1661–1694 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ben-Sasson, E., Harsha, P., Lachish, O., Matsliah, A.: Sound 3-query PCPPs are long. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 686–697. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  39. Guruswami, V.: On 2-query codeword testing with near-perfect completeness. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 267–276. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  40. Kol, G., Raz, R.: Bounds on 2-Query Locally Testable Codes with Affine Tests. ECCC Report TR09-138 (2009)

    Google Scholar 

  41. Kol, G., Raz, R.: Locally testable codes analogues to the unique games conjecture do not exist. ECCC Report TR09-128 (2009)

    Google Scholar 

  42. Ben-Sasson, E., Harsha, P., Raskhodnikova, S.: Some 3CNF properties are hard to test. SIAM J. Comput. 35(1), 1–21 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  43. Gallager, R.: Low-density parity-check codes. IRE Transactions on Information Theory 8(1), 21–28 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  44. Sipser, M., Spielman, D.: Expander codes. IEEE Transactions on Information Theory 42(6), 1710–1722 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  45. Spielman, D.: Computationally efficient error-correcting codes and holographic proofs. PhD thesis, MIT (1995)

    Google Scholar 

  46. Ben-Sasson, E., Viderman, M.: Dense locally testable codes have bad rate (2010) (unpublished manuscript)

    Google Scholar 

  47. Balog, A., Szemerédi, E.: A statistical theorem of set addition. Combinatorica 14(3), 263–268 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  48. Gowers, W.T.: A new proof of szemerèdi’s theorem for arithmetic progressions of length four. Geom. Funct. Anal. 8(3), 529–551 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  49. Freiman, G.A.: Foundations of a structural theory of set addition, vol. 37. American Mathematical Society, Providence (1973)

    MATH  Google Scholar 

  50. Ruzsa, I.Z.: An analog of freiman’s theorem in groups. Astèrique 258, 323–326 (1999)

    MathSciNet  MATH  Google Scholar 

  51. Grigorescu, E., Kaufman, T., Sudan, M.: Succinct representation of codes with applications to testing. In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, pp. 534–547 (2009)

    Google Scholar 

  52. Kaufman, T., Viderman, M.: Locally testable vs. locally decodable codes. In: Shaltiel, R. (ed.) Proc. 14th Intl. Workshop on Randomization and Computation - RANDOM 2010 (2010)

    Google Scholar 

  53. Woodruff, D.: New lower bounds for general locally decodable codes. Electronic Colloquium on Computational Complexity (ECCC) 14(006) (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ben-Sasson, E. (2010). Limitation on the Rate of Families of Locally Testable Codes. In: Goldreich, O. (eds) Property Testing. Lecture Notes in Computer Science, vol 6390. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16367-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16367-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16366-1

  • Online ISBN: 978-3-642-16367-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics