Skip to main content

Robust Control of Immune Systems Under Noises: Stochastic Game Approach

  • Chapter
  • First Online:
Handbook of Statistical Bioinformatics

Abstract

A robust control of immune response is proposed for therapeutic en- hancement to match a prescribed immune response under uncertain initial states and environmental noises, including continuous intrusion of exogenous pathogens. The worst-case effect of all possible noises and uncertain initial states on the matching for a desired immune response is minimized for the enhanced immune system, i.e., a robust control is designed to track a prescribed immune model response from the stochastic minimax matching perspective. This minimax matching problem could herein be transformed to an equivalent stochastic game problem. The exogenous pathogens and environmental noises (external noises) and stochastic uncertain internal noises are considered as a player to maximize (worsen) the matching error when the therapeutic control agents are considered as another player to minimize the matching error. Since the innate immune system is highly nonlinear, it is not easy to solve the robust control problem by the nonlinear stochastic game method directly. A fuzzy model is proposed to interpolate several linearized immune systems at different operating points to approximate the innate immune system via smooth fuzzy membership functions. With the help of fuzzy approximation method, the stochastic minimax matching control problem of immune systems could be easily solved by the proposed fuzzy stochastic game method via the linear matrix inequality (LMI) technique with the help of Robust Control Toolbox in Matlab. Finally, in silico examples are given to illustrate the design procedure and to confirm the efficiency and efficacy of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adler, F. R., & Karban, R. (1994). Defended fortresses or moving targets? Another model of inducible defenses inspired by military metaphors. American Naturalist, 144, 813–832.

    Article  Google Scholar 

  2. Althaus, C. L., Ganusov, V. V., & De Boer, R. J. (2007). Dynamics of CD8 + T cell responses during acute and chronic lymphocytic choriomeningitis virus infection. Journal of Immunology, 179, 2944–2951.

    Google Scholar 

  3. Asachenkov, A. L. (1994). Disease dynamics. Boston: Birkhuser.

    Google Scholar 

  4. Astrom, K. J., & Wittenmark, B. (1995). Adaptive control. Reading, Mass: Addison-Wesley.

    Google Scholar 

  5. Basar, T., & Olsder, G. J. (1999). Dynamic noncooperative game theory. Philadelphia: SIAM.

    MATH  Google Scholar 

  6. Bell, D. J., & Katusiime, F. (1980). A Time-Optimal Drug Displacement Problem. Optimal Control Applications & Methods, 1, 217–225.

    Article  MathSciNet  MATH  Google Scholar 

  7. Bellman, R. (1983). Mathematical methods in medicine. Singapore: World Scientific.

    MATH  Google Scholar 

  8. Bonhoeffer, S., May, R. M., Shaw, G. M., & Nowak, M. A. (1997). Virus dynamics and drug therapy. Proceedings of the National Academy Sciences of the United States of America, 94, 6971–6976.

    Article  Google Scholar 

  9. Boyd, S. P. (1994). Linear matrix inequalities in system and control theory. Society for Industrial and Applied Mathematics, Philadelphia.

    Google Scholar 

  10. Carson, E. R., Cramp, D. G., Finkelstein, F., & Ingram, D. (1985). Computers and control in clinical medicine. In Control system concepts and approaches in clinical medicine. New York: Plenum.

    Google Scholar 

  11. Chen, B. S., Chang, C. H., & Chuang, Y. J. (2008). Robust model matching control of immune systems under environmental disturbances: Dynamic game approach. Journal of Theoretical Biology, 253, 824–837.

    Article  MathSciNet  Google Scholar 

  12. Chen, B. S., Tseng, C. S., & Uang, H. J. (1999). Robustness design of nonlinear dynamic systems via fuzzy linear control. IEEE Transactions on Fuzzy Systems, 7, 571–585.

    Article  Google Scholar 

  13. Chen, B. S., Tseng, C. S., & Uang, H. J. (2000). Mixed H-2/H-infinity fuzzy output feedback control design for nonlinear dynamic systems: An LMI approach. IEEE Transactions on Fuzzy Systems, 8, 249–265.

    Article  Google Scholar 

  14. Chizeck, H., & Katona, P. (1985). Computers and control in clinical medicine. In Closed-loop control (pp. 95–151). New York: Plenum.

    Google Scholar 

  15. De Boer, R. J., & Boucher, C. A. (1996). Anti-CD4 therapy for AIDS suggested by mathematical models. Proceedings of Biological Science, 263, 899–905.

    Article  Google Scholar 

  16. Gentilini, A., Morari, M., Bieniok, C., Wymann, R., & Schnider, T. W. (2001). Closed-loop control of analgesia in humans. In Proceedings of the IEEE conference on decision and control (Vol. 1, pp. 861–866). Orlando.

    Google Scholar 

  17. Janeway, C. (2005). Immunobiology: The immune system in health and disease. New York: Garland.

    Google Scholar 

  18. Jelliffe, R. W. (1986). Topics in clinical pharmacology and therapeutics. In Clinical applications of pharmacokinetics and control theory: Planning, monitoring, and adjusting regimens of aminoglycosides, lidocaine, digitoxin, and digoxin (pp. 26–82). New York: Springer.

    Google Scholar 

  19. Kirschner, D., Lenhart, S., & Serbin, S. (1997). Optimal control of the chemotherapy of HIV. Journal of Mathematical Biology, 35, 775–792.

    Article  MathSciNet  MATH  Google Scholar 

  20. Kwong, G. K., Kwok, K. E., Finegan, B. A., & Shah, S. L. (1995). Clinical evaluation of long range adaptive control for meanarterial blood pressure regulation. In Proceedings of the American control conference (Vol. 1, pp. 786–790). Seattle.

    Google Scholar 

  21. Li, T. H. S., Chang, S. J., & Tong, W. (2004). Fuzzy target tracking control of autonomous mobile robots by using infrared sensors. IEEE Transactions on Fuzzy Systems, 12, 491–501.

    Article  Google Scholar 

  22. Lian, K. Y., Chiu, C. S., Chiang, T. S., & Liu, P. (2001). LMI-based fuzzy chaotic synchronization and communications. IEEE Transactions on Fuzzy Systems, 9, 539–553.

    Article  Google Scholar 

  23. Lydyard, P. M., Whelan, A., & Fanger, M. W. (2000). Instant notes in immunology. New York: Springer.

    Google Scholar 

  24. Marchuk, G. I. (1983). Mathematical models in immunology. In Optimization software. Inc. Worldwide distribution rights. New York: Springer.

    Google Scholar 

  25. Nowak, M. A., & May, R. M. (2000). Virus dynamics : Mathematical principles of immunology and virology. Oxford: Oxford University Press.

    MATH  Google Scholar 

  26. Nowak, M. A., May, R. M., Phillips, R. E., Rowland-Jones, S., Lalloo, D. G., McAdam, S., Klenerman, P., Koppe, B., Sigmund, K., Bangham, C. R., et al. (1995). Antigenic oscillations and shifting immunodominance in HIV-1 infections. Nature, 375, 606–611.

    Article  Google Scholar 

  27. Parker, R. S., Doyle, J. F., III, Harting, J. E., & Peppas, N. A. (1996). Model predictive control for infusion pump insulin delivery. In Proceedings of the 18th annual international conference of the IEEE engineering in medicine and biology society (Vol. 5, pp. 1822–1823). Amsterdam.

    Google Scholar 

  28. Perelson, A. S., Kirschner, D. E., & De Boer, R. (1993). Dynamics of HIV infection of CD4 + T cells. Mathematical Bioscience, 114, 81–125.

    Article  MATH  Google Scholar 

  29. Perelson, A. S., Neumann, A. U., Markowitz, M., Leonard, J. M., & Ho, D. D. (1996). HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science, 271, 1582–1586.

    Article  Google Scholar 

  30. Perelson, A. S., & Weisbuch, G. (1997). Immunology for physicists. Reviews of Modern Physics, 69, 1219–1267.

    Article  Google Scholar 

  31. Polycarpou, M. M., & Conway, J. Y. (1995). Modeling and control of drug delivery systems using adaptive neural control methods. In Proceedings of the American control conference (Vol. 1, pp. 781–785). Seattle.

    Google Scholar 

  32. Robinson, D. C. (1986). Topics in clinical pharmacology and therapeutics. In Principles of pharmacokinetics (pp. 1–12). New York: Springer.

    Google Scholar 

  33. Rundell, A., HogenEsch, H., & DeCarlo, R. (1995). Enhanced modeling of the immune system to incorporate naturalkiller cells and memory. In Proceedings of American control conference (Vol. 1, pp. 255–259). Seattle.

    Google Scholar 

  34. Schumitzky, A. (1986). Topics in clinical pharmacology and therapeutics. In Stochastic control of pharmacokinetic systems (pp. 13–25). New York: Springer.

    Google Scholar 

  35. Shudo, E., Haccou, P., & Iwasa, Y. (2003). Optimal choice between feedforward and feedback control in gene expression to cope with unpredictable danger. Journal of Theoretical Biology, 223, 149–160.

    Article  MathSciNet  Google Scholar 

  36. Shudo, E., & Iwasa, Y. (2001). Inducible defense against pathogens and parasites: optimal choice among multiple options. Journal of Theoretical Biology, 209, 233–247.

    Article  Google Scholar 

  37. Shudo, E., & Iwasa, Y. (2002). Optimal defense strategy: Storage vs. new production. Journal of Theoretical Biology, 219, 309–323.

    Google Scholar 

  38. Shudo, E., & Iwasa, Y. (2004). Dynamic optimization of host defense, immune memory, and post-infection pathogen levels in mammals. Journal of Theoretical Biology, 228, 17–29.

    Article  Google Scholar 

  39. Stafford, M. A., Corey, L., Cao, Y., Daar, E. S., Ho, D. D., & Perelson, A. S. (2000). Modeling plasma virus concentration during primary HIV infection. Journal of Theoretical Biology, 2003, 285–301.

    Article  Google Scholar 

  40. Stengel, R. F., & Ghigliazza, R. (2004). Stochastic optimal therapy for enhanced immune response. Mathematical Bioscience, 191, 123–142.

    Article  MathSciNet  MATH  Google Scholar 

  41. Stengel, R. F., Ghigliazza, R., Kulkarni, N., & Laplace, O. (2002). Optimal control of innate immune response. Optimal Control Applications & Methods, 23, 91–104.

    Article  MathSciNet  MATH  Google Scholar 

  42. Stengel, R. F., Ghigliazza, R. M., & Kulkarni, N. V. (2002). Optimal enhancement of immune response. Bioinformatics, 18, 1227–1235.

    Article  Google Scholar 

  43. Swan, G. W. (1981). Optimal-Control Applications in Biomedical-Engineering – a Survey. Optimal Control Applications & Methods, 2, 311–334.

    Article  MathSciNet  MATH  Google Scholar 

  44. Takagi, T., & Sugeno, M. (1985). Fuzzy Identification of Systems and Its Applications to Modeling and Control. IEEE Transactions on Systems Man and Cybernetics, 15, 116–132.

    Article  MATH  Google Scholar 

  45. van Rossum, J. M., Steyger, O., van Uem, T., Binkhorst, G. J., & Maes, R. A. A. (1986). Modelling of biomedical systems. In Pharmacokinetics by using mathematical systems dynamics (pp. 121–126). Amsterdam: Elsevier.

    Google Scholar 

  46. Villadsen, L. S., Skov, L., & Baadsgaard, O. (2003). Biological response modifiers and their potential use in the treatment of inflammatory skin diseases. Experimental Dermatology, 12, 1–10.

    Article  Google Scholar 

  47. Wein, L. M., D’Amato, R. M., & Perelson, A. S. (1998). Mathematical analysis of antiretroviral therapy aimed at HIV-1 eradication or maintenance of low viral loads. Journal of Theoretical Biology, 192, 81–98.

    Article  Google Scholar 

  48. Wiener, N. (1948). Cybernetics; or, control and communication in the animal and the machine. Cambridge: Technology Press.

    Google Scholar 

  49. Wodarz, D., & Nowak, M. A. (1999). Specific therapy regimes could lead to long-term immunological control of HIV. Proceedings of the National Academy of Sciences of the United States of America, 96, 14464–14469.

    Article  Google Scholar 

  50. Wodarz, D., & Nowak, M. A. (2000). CD8 memory, immunodominance, and antigenic escape. European Journal of Immunology, 30, 2704–2712.

    Article  Google Scholar 

  51. Zhou, K., Doyle, J. C., & Glover, K. (1996). Robust and optimal control. Upper Saddle River, NJ: Prentice Hall.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bor-Sen Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chen, BS., Chang, CH., Chuang, YJ. (2011). Robust Control of Immune Systems Under Noises: Stochastic Game Approach. In: Lu, HS., Schölkopf, B., Zhao, H. (eds) Handbook of Statistical Bioinformatics. Springer Handbooks of Computational Statistics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16345-6_27

Download citation

Publish with us

Policies and ethics