Cancer Systems Biology

  • Elana J. Fertig
  • Ludmila V. Danilova
  • Michael F. Ochs
Part of the Springer Handbooks of Computational Statistics book series (SHCS)


Cancer is a complex disease, resulting from system-wide interactions of biological processes rather than from any single underlying cause. The processes that drive all cancer development and progression have been termed the ‘hallmarks of cancer’. With the growth of large-scale measurements of numerous molecular and cellular properties, a new approach, cancer systems biology, to understanding the interrelationship between the hallmarks is presently being developed. Cancer systems biology focuses on systems-level analysis and presently strives to develop novel data integration and analysis techniques to model and infer cancer biology and treatment response.


Cancer Stem Cell Tumor Stroma Signaling Network Cancer System Class Comparison 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ach, R. A., Wang, H., & Curry, B. (2008). Measuring micrornas: Comparisons of microarray and quantitative PCR measurements, and of different total RNA prep methods. BMC Biotechnology, 8, 69.CrossRefGoogle Scholar
  2. 2.
    Ahmed, F., Steele, J. C., Herbert, J. M. J., Steven, N. M., & Bicknell, R. (2008, September). Tumor stroma as a target in cancer. Current Cancer Drug Targets, 8(6), 447–453.Google Scholar
  3. 3.
    Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003, April 1). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100(7), 3983–3988.Google Scholar
  4. 4.
    Alberts, B. (2008). Molecular biology of the cell (5th ed.). New York: Garland Science.Google Scholar
  5. 5.
    Albini, A., & Sporn, M. B. (2007, February). The tumour microenvironment as a target for chemoprevention. Nature Reviews. Cancer, 7(2), 139–147.Google Scholar
  6. 6.
    Ali, S., & Ali, S. (2007, October 15). Role of c-KIT/SCF in cause and treatment of gastrointestinal stromal tumors (GIST). Gene, 401(1–2), 38–45.Google Scholar
  7. 7.
    Allison, D. B., Cui, X., Page, G. P., & Sabripour, M. (2006, January). Microarray data analysis: From disarray to consolidation and consensus. Nature Reviews. Genetics, 7(1), 55–65.Google Scholar
  8. 8.
    Alter, O., Brown, P. O., & Botstein, D. (2000, August 29). Singular value decomposition for genome-wide expression data processing and modeling. Proceedings of the National Academy of Sciences of the United States of America, 97(18), 10101–10106.Google Scholar
  9. 9.
    Anderson, A. R. A., & Quaranta, V. (2008, March). Integrative mathematical oncology. Nature Reviews. Cancer, 8(3), 227–234.Google Scholar
  10. 10.
    Anderson, A. R. A., Weaver, A. M., Cummings, P. T., & Quaranta, V. (2006, December 1). Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell, 127(5), 905–915.Google Scholar
  11. 11.
    Bacac, M., Provero, P., Mayran, N., Stehle, J.-C., Fusco, C., & Stamenkovic, I. (2006). A mouse stromal response to tumor invasion predicts prostate and breast cancer patient survival. PLoS ONE, 1, e32.CrossRefGoogle Scholar
  12. 12.
    Baggerly, K. A., Morris, J. S., Edmonson, S. R., & Coombes, K. R. (2005, February). Signal in noise: Evaluating reported reproducibility of serum proteomic tests for ovarian cancer. Journal of the National Cancer Institute, 97(4), 307–309.Google Scholar
  13. 13.
    Baker, S. G.,& Kramer, B. S. (2008, October). Using microarrays to study the microenvironment in tumor biology: The crucial role of statistics. Seminars in Cancer Biology, 18(5), 305–310.Google Scholar
  14. 14.
    Barrett, T., Troup, D. B., Wilhite, S. E., Ledoux, P., Rudnev, D., Evangelista, C., Kim, I. F., Soboleva, A., Tomashevsky, M., Marshall, K. A., Phillippy, K. H., Sherman, P. M., Muertter, R. N., & Edgar, R. (2009, January). NCBI GEO: Archive for high-throughput functional genomic data. Nucleic Acids Research, 37(Database issue), D885–D890.Google Scholar
  15. 15.
    Bauch, A., & Superti-Furga, G. (2006, April). Charting protein complexes, signaling pathways, and networks in the immune system. Immunological Reviews, 210, 187–207.Google Scholar
  16. 16.
    Baylin, S. B., & Ohm, J. E. (2006, February). Epigenetic gene silencing in cancer – a mechanism for early oncogenic pathway addiction? Nature Reviews. Cancer, 6(2), 107–116.Google Scholar
  17. 17.
    Beerenwinkel, N., Antal, T., Dingli, D., Traulsen, A., Kinzler, K. W., Velculescu, V. E., Vogelstein, B., & Nowak, M. A. (2007). Genetic progression and the waiting time to cancer. PLoS Computational Biology, 3(11), e225.MathSciNetCrossRefGoogle Scholar
  18. 18.
    Behmoaram, E., Bijian, K., Bismar, T. A., & Alaoui-Jamali, M. A. (2008). Early stage cancer cell invasion: Signaling, biomarkers and therapeutic targeting. Frontiers in Bioscience, 13, 6314–6325.CrossRefGoogle Scholar
  19. 19.
    Bernard, A., & Hartemink, A. J. (2005). Informative structure priors: Joint learning of dynamic regulatory networks from multiple types of data. Pacific Symposium on Biocomputing, 10, 459–470.CrossRefGoogle Scholar
  20. 20.
    Bibikova, M., Lin, Z., Zhou, L., Chudin, E., Garcia, E. W., Wu, B., Doucet, D., Thomas, N. J., Wang, Y., Vollmer, E., Goldmann, T., Seifart, C., Jiang, W., Barker, D. L., Chee, M. S., Floros, J., & Fan, J.-B. (2006, March). High-throughput DNA methylation profiling using universal bead arrays. Genome Research, 16(3), 383–393.Google Scholar
  21. 21.
    Bidaut, G., Suhre, K., Claverie, J.-M., & Ochs, M. F. (2006). Determination of strongly overlapping signaling activity from microarray data. BMC Bioinformatics, 7, 99.CrossRefGoogle Scholar
  22. 22.
    Bleyer, A., Barr, R., Hayes-Lattin, B., Thomas, D., Ellis, C., & Anderson, B. (2008, April). The distinctive biology of cancer in adolescents and young adults. Nature Reviews. Cancer, 8(4), 288–298.Google Scholar
  23. 23.
    Blow, J. J., & Gillespie, P. J. (2008, October). Replication licensing and cancer–a fatal entanglement? Nature Reviews. Cancer, 8(10), 799–806.Google Scholar
  24. 24.
    Bock, C., & Lengauer, T. (2008, January 1). Computational epigenetics. Bioinformatics, 24(1), 1–10.Google Scholar
  25. 25.
    Bodenreider, O., & Stevens, R. (2006, September). Bio-ontologies: Current trends and future directions. Brief Bioinformatics, 7(3), 256–274.Google Scholar
  26. 26.
    Brazhnik, P., de la Fuente, A., & Mendes, P. (2002). Gene networks: How to put the function in genomics. Trends Biotechnology, 20(11), 467–472.CrossRefGoogle Scholar
  27. 27.
    Brown, M. P., Grundy, W. N., Lin, D., Cristianini, N., Sugnet, C. W., Furey, T. S., Ares, M., Jr., & Haussler, D. (2000, January 4). Knowledge-based analysis of microarray gene expression data by using support vector machines. Proceedings of the National Academy of Sciences of the United States of America, 97(1), 262–267.Google Scholar
  28. 28.
    Cai, L., Dalal, C. K., & Elowitz, M. B. (2008, September 25). Frequency-modulated nuclear localization bursts coordinate gene regulation. Nature, 455(7212), 485–490.Google Scholar
  29. 29.
    Cairns, R. A., Khokha, R., & Hill, R. P. (2003, November). Molecular mechanisms of tumor invasion and metastasis: An integrated view. Current Molecular Medicine, 3(7), 659–671.Google Scholar
  30. 30.
    Camacho, D., Vera Licona, P., Mendes, P., & Laubenbacher, R. (2007, December). Comparison of reverse-engineering methods using an in silico network. Annals of the New York Academy of Sciences, 1115, 73–89,.Google Scholar
  31. 31.
    Carvalho, C. M., Chang, J., Lucas, J., Nevins, J. R., Wang, Q., & West, M. (2008). High-dimensional sparse factor modelling: Applications in gene expression genomics. Journal of the American Statistical Association, 103, 1438–1456.MathSciNetCrossRefGoogle Scholar
  32. 32.
    Chiang, A. C., & Massague, J. (2008, December 25). Molecular basis of metastasis. The New England Journal of Medicine, 359(26), 2814–2823.Google Scholar
  33. 33.
    Clasper, S., Royston, D., Baban, D., Cao, Y., Ewers, S., Butz, S., Vestweber, D., & Jackson, D. G. (2008, September 15). A novel gene expression profile in lymphatics associated with tumor growth and nodal metastasis. Cancer Research, 68(18), 7293–7303.Google Scholar
  34. 34.
    Claverie, J. M. (1999). Computational methods for the identification of differential and coordinated gene expression. Human Molecular Genetics, 8(10), 1821–1832.CrossRefGoogle Scholar
  35. 35.
    Croce, C. M. (2008, January 31). Oncogenes and cancer. The New England Journal of Medicine, 358(5), 502–511.Google Scholar
  36. 36.
    Crosby, M. E., Kulshreshtha, R., Ivan, M., & Glazer, P. M. (2009, February 1). MicroRNA regulation of DNA repair gene expression in hypoxic stress. Cancer Research, 69(3), 1221–1229.Google Scholar
  37. 37.
    De Wever, O., Demetter, P., Mareel, M., & Bracke, M. (2008, November 15). Stromal myofibroblasts are drivers of invasive cancer growth. International Journal of Cancer, 123(10), 2229–2238.Google Scholar
  38. 38.
    Dick, J. E. (2008, December 15). Stem cell concepts renew cancer research. Blood, 112(13), 4793–4807.Google Scholar
  39. 39.
    Draghici, S., Khatri, P., Bhavsar, P., Shah, A., Krawetz, S. A., & Tainsky, M. A. (2003, July). Onto-tools, the toolkit of the modern biologist: Onto-express, onto-compare, onto-design and onto-translate. Nucleic Acids Research, 31(13), 3775–3781.Google Scholar
  40. 40.
    Duesberg, P., & Li, R. (2003, May-June). Multistep carcinogenesis: A chain reaction of aneuploidizations. Cell Cycle, 2(3), 202–210.Google Scholar
  41. 41.
    Dupuy, A., & Simon, R. M. (2007, January 17). Critical review of published microarray studies for cancer outcome and guidelines on statistical analysis and reporting. Journal of the National Cancer Institute, 99(2), 147–157.Google Scholar
  42. 42.
    Dvorak, H. F. (1986, December 25). Tumors: Wounds that do not heal. similarities between tumor stroma generation and wound healing. The New England Journal of Medicine, 315(26), 1650–1659.Google Scholar
  43. 43.
    Eisen, M. B., Spellman, P. T., Brown, P. O., & Botstein, D. (1998, December 8). Cluster analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Sciences of the United States of America, 95(25), 14863–14868.Google Scholar
  44. 44.
    Eklund, A. C., & Szallasi, Z. (2008). Correction of technical bias in clinical microarray data improves concordance with known biological information. Genome Biology, 9(2), R26.CrossRefGoogle Scholar
  45. 45.
    Eyler, C. E., & Rich, J. N. (2008, June 10). Survival of the fittest: Cancer stem cells in therapeutic resistance and angiogenesis. Journal of Clinical Oncology, 26(17), 2839–2845.Google Scholar
  46. 46.
    Fearon, E. R., & Vogelstein, B. (1990, June 1). A genetic model for colorectal tumorigenesis. Cell, 61(5), 759–767.Google Scholar
  47. 47.
    Feinberg, A. P., Ohlsson, R., & Henikoff, S. (2006, January). The epigenetic progenitor origin of human cancer. Nature Reviews. Genetics, 7(1), 21–33.Google Scholar
  48. 48.
    Feinberg, A. P., & Tycko, B. (2004, February). The history of cancer epigenetics. Nature Reviews. Cancer, 4(2), 143–153.Google Scholar
  49. 49.
    Finak, G., Bertos, N., Pepin, F., Sadekova, S., Souleimanova, M., Zhao, H., Chen, H., Omeroglu, G., Meterissian, S., Omeroglu, A., Hallett, M., & Park, M. (2008, May). Stromal gene expression predicts clinical outcome in breast cancer. Nature Medicine, 14(5), 518–527.Google Scholar
  50. 50.
    Finkel, T., Serrano, M., & Blasco, M. A. (2007, August 16). The common biology of cancer and ageing. Nature, 448(7155), 767–774.Google Scholar
  51. 51.
    Folkman, J. (2006). Angiogenesis. Annual Review of Medicine, 57, 1–18.CrossRefGoogle Scholar
  52. 52.
    Frisk, T., Foukakis, T., Dwight, T., Lundberg, J., Hoog, A., Wallin, G., Eng, C., Zedenius, J., & Larsson, C. (2002, September). Silencing of the pten tumor-suppressor gene in anaplastic thyroid cancer. Genes Chromosomes Cancer, 35(1), 74–80.Google Scholar
  53. 53.
    Gao, P., Honkela, A., Rattray, M., & Lawrence, N. D. (2008, August 15). Gaussian process modelling of latent chemical species: Applications to inferring transcription factor activities. Bioinformatics, 24(16), i70–i75.Google Scholar
  54. 54.
    Gargiulo, G., & Minucci, S. (2009). Epigenomic profiling of cancer cells. International Journal of Biochemistry and Cell Biology, 41(1), 127–135.CrossRefGoogle Scholar
  55. 55.
    Gatenby, R. A., & Vincent, T. L. (2003, October 1). An evolutionary model of carcinogenesis. Cancer Research, 63(19), 6212–6220.Google Scholar
  56. 56.
    Ge, H., Walhout, A. J. M., & Vidal, M. (2003, October). Integrating ‘omic’ information: A bridge between genomics and systems biology. Trends in Genetics, 19(10), 551–560.Google Scholar
  57. 57.
    Gentleman, R. C., Carey, V. J., Bates, D. M., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B., Gautier, L., Ge, Y., Gentry, J., Hornik, K., Hothorn, T., Huber, W., Iacus, S., Irizarry, R., Leisch, F., Li, C., Maechler, M., Rossini, A. J., Sawitzki, G., Smith, C., Smyth, G., Tierney, L., Yang, J. Y., & Zhang, J. (2004). Bioconductor: Open software development for computational biology and bioinformatics. Genome Biology, 5(10), R80.CrossRefGoogle Scholar
  58. 58.
    Gevertz, J. L., & Torquato, S., (2006, December 21). Modeling the effects of vasculature evolution on early brain tumor growth. Journal of Theoretical Biology, 243(4), 517–531.Google Scholar
  59. 59.
    Ghosh, D., & Chinnaiyan, A. M. (2009, January). Genomic outlier profile analysis: Mixture models, null hypotheses, and nonparametric estimation. Biostatistics, 10(1), 60–69.Google Scholar
  60. 60.
    Giehl, K., & Menke, A. (2008). Microenvironmental regulation of E-Cadherin-mediated adherens junctions. Frontiers in Bioscience, 13, 3975–3985.CrossRefGoogle Scholar
  61. 61.
    Gillespie, D. T. (1976). A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. Journal of Computational Physics, 22, 403–434.MathSciNetCrossRefGoogle Scholar
  62. 62.
    Gius, D., & Spitz, D. R. (2006, July-August). Redox signaling in cancer biology. Antioxid Redox Signal, 8(7–8), 1249–1252.Google Scholar
  63. 63.
    Greenman, C., Stephens, P., Smith, R., Dalgliesh, G. L., Hunter, C., Bignell, G., Davies, H., Teague, J., Butler, A., Stevens, C., Edkins, S., O’Meara, S., Vastrik, I., Schmidt, E. E., Avis, T., Barthorpe, S., Bhamra, G., Buck, G., Choudhury, B., Clements, J., Cole, J., Dicks, E., Forbes, S., Gray, K., Halliday, K., Harrison, R., Hills, K., Hinton, J., Jenkinson, A., Jones, D., Menzies, A., Mironenko, T., Perry, J., Raine, K., Richardson, D., Shepherd, R., Small, A., Tofts, C., Varian, J., Webb, T., West, S., Widaa, S., Yates, A., Cahill, D. P., Louis, D. N., Goldstraw, P., Nicholson, A. G., Brasseur, F., Looijenga, L., Weber, B. L., Chiew, Y.-E., DeFazio, A., Greaves, M. F., Green, A. R., Campbell, P., Birney, E., Easton, D. F., Chenevix-Trench, G., Tan, M.-H., Khoo, S. K., Teh, B. T., Yuen, S. T., Leung, S. Y., Wooster, R., Futreal, P. A., & Stratton, M. R. (2007, March 8). Patterns of somatic mutation in human cancer genomes. Nature, 446(7132), 153–158.Google Scholar
  64. 64.
    Griffin, T. J., Gygi, S. P., Ideker, T., Rist, B., Eng, J., Hood, L., & Aebersold, R. (2002, April). Complementary profiling of gene expression at the transcriptome and proteome levels in Saccharomyces cerevisiae. Molecular & Cellular Proteomics, 1(4), 323–333.Google Scholar
  65. 65.
    Hahn, W. C., & Weinberg, R. A. (2002, November 14). Rules for making human tumor cells. The New England Journal of Medicine, 347(20), 1593–1603.Google Scholar
  66. 66.
    Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100(1), 57–70.CrossRefGoogle Scholar
  67. 67.
    Hanawalt, P. C., & Spivak, G. (2008, December). Transcription-coupled DNA repair: Two decades of progress and surprises. Nature Reviews. Molecular Cell Biology, 9(12), 958–970.Google Scholar
  68. 68.
    Harley, C. B. (2008, March). Telomerase and cancer therapeutics. Nature Reviews. Cancer, 8(3), 167–179.Google Scholar
  69. 69.
    Hartemink, A. J., Gifford, D. K., Jaakkola, T. S., & Young, R. A. (2001). Maximum likelihood estimate of optimal scaling factors for expression array normalization. SPIE BiOS. Proc SPIE 4266, 132–140.Google Scholar
  70. 70.
    Hartemink, A. J., Gifford, D. K., Jaakkola, T. S., & Young, R. A. (2001). Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks. Pacific Symposium on Biocomputing, 6, 422–433.Google Scholar
  71. 71.
    Herbert, J. M. J., Stekel, D., Sanderson, S., Heath, V. L., & Bicknell, R. (2008). A novel method of differential gene expression analysis using multiple cdna libraries applied to the identification of tumour endothelial genes. BMC Genomics, 9, 153.CrossRefGoogle Scholar
  72. 72.
    Herman, J. G., & Baylin, S. B. (2003, November 20). Gene silencing in cancer in association with promoter hypermethylation. The New England Journal of Medicine, 349(21), 2042–2054.Google Scholar
  73. 73.
    Hornberg, J. J., Bruggeman, F. J., Westerhoff, H. V., & Lankelma, J. (2006, February-March). Cancer: A systems biology disease. Biosystems, 83(2–3), 81–90.Google Scholar
  74. 74.
    Hua, F., Hautaniemi, S., Yokoo, R., & Lauffenburger, D. A. (2006, August 22). Integrated mechanistic and data-driven modelling for multivariate analysis of signalling pathways. Journal of The Royal Society Interface, 3(9), 515–526.Google Scholar
  75. 75.
    Hunter, D. J., Kraft, P., Jacobs, K. B., Cox, D. G., Yeager, M., Hankinson, S. E., Wacholder, S., Wang, Z., Welch, R., Hutchinson, A., Wang, J., Yu, K., Chatterjee, N., Orr, N., Willett, W. C., Colditz, G. A., Ziegler, R. G., Berg, C. D., Buys, S. S., McCarty, C. A., Feigelson, H. S., Calle, E. E., Thun, M. J., Hayes, R. B., Tucker, M., Gerhard, D. S., Fraumeni, J. F., Jr., Hoover, R. N., Thomas, G., & Chanock, S. J. (2007, July). A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nature Genetics, 39(7), 870–874.Google Scholar
  76. 76.
    Hwang, D., Rust, A. G., Ramsey, S., Smith, J. J., Leslie, D. M., Weston, A. D., de Atauri, P., Aitchison, J. D., Hood, L., Siegel, A. F., & Bolouri, H. (2005, November 29). A data integration methodology for systems biology. Proceedings of the National Academy of Sciences of the United States of America, 102(48), 17296–17301.Google Scholar
  77. 77.
    Iacobuzio-Donahue, C. A., Ryu, B., Hruban, R. H., & Kern, S. E. (2002, January). Exploring the host desmoplastic response to pancreatic carcinoma: Gene expression of stromal and neoplastic cells at the site of primary invasion. The American Journal of Pathology, 160(1), 91–99.Google Scholar
  78. 78.
    Irizarry, R. A., Hobbs, B., Collin, F., Beazer-Barclay, Y. D., Antonellis, K. J., Scherf, U., & Speed, T. P. (2003, April). Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics, 4(2), 249–264.Google Scholar
  79. 79.
    Irizarry, R. A., Ladd-Acosta, C., Wen, B., Wu, Z., Montano, C., Onyango, P., Cui, H., Gabo, K., Rongione, M., Webster, M., Ji, H., Potash, J. B., Sabunciyan, S., & Feinberg, A. P. (2009, February). The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific cpg island shores. Nature Genetics, 41(2), 178–186.Google Scholar
  80. 80.
    Irmer, D., Funk, J. O., & Blaukat, A. (2007, August 23). EGFR kinase domain mutations – functional impact and relevance for lung cancer therapy. Oncogene, 26(39), 5693–5701.Google Scholar
  81. 81.
    Jacks, T., & Weinberg, R. A. (2002, December 27). Taking the study of cancer cell survival to a new dimension. Cell, 111(7), 923–925.Google Scholar
  82. 82.
    Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J., Murray, T., & Thun, M. J. (2008, March-April). Cancer statistics. CA: A Cancer Journal for Clinicians, 58(2), 71–96.Google Scholar
  83. 83.
    Johnson, W. E., Li, C., & Rabinovic, A. (2007, January). Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics, 8(1), 118–127.Google Scholar
  84. 84.
    Jones, S., Zhang, X., Parsons, D. W., Lin, J. C.-H., Leary, R. J., Angenendt, P., Mankoo, P., Carter, H., Kamiyama, H., Jimeno, A., Hong, S.-M., Fu, B., Lin, M.-T., Calhoun, E. S., Kamiyama, M., Walter, K., Nikolskaya, T., Nikolsky, Y., Hartigan, J., Smith, D. R., Hidalgo, M., Leach, S. D., Klein, A. P., Jaffee, E. M., Goggins, M., Maitra, A., Iacobuzio-Donahue, C., Eshleman, J. R., Kern, S. E., Hruban, R. H., Karchin, R., Papadopoulos, N., Parmigiani, G., Vogelstein, B., Velculescu, V. E., & Kinzler, K. W. (2008, September 26). Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science, 321(5897), 1801–1806.Google Scholar
  85. 85.
    Jordan, J. D., Landau, E. M., & Iyengar, R. (2000, October). Signaling networks: The origins of cellular multitasking. Cell, 103, 193–200.Google Scholar
  86. 86.
    Keniry, M., & Parsons, R. (2008, September 18). The role of PTEN signaling perturbations in cancer and in targeted therapy. Oncogene, 27(41), 5477–5485.Google Scholar
  87. 87.
    Khalil, I. G., & Hill, C. (2005, January). Systems biology for cancer. Current Opinion in Oncology, 17(1), 44–48.Google Scholar
  88. 88.
    Khan, J., Wei, J. S., Ringner, M., Saal, L. H., Ladanyi, M., Westermann, F., Berthold, F., Schwab, M., Antonescu, C. R., Peterson, C., & Meltzer, P. S. (2001, June). Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature Medicine, 7(6), 673–679.Google Scholar
  89. 89.
    Kholodenko, B. N., Kiyatkin, A., Bruggeman, F. J., Sontag, E., Westerhoff, H. V., & Hoek, J. B. (2002, October 1). Untangling the wires: A strategy to trace functional interactions in signaling and gene networks. Proceedings of the National Academy of Sciences of the United States of America, 99(20), 12841–12846.Google Scholar
  90. 90.
    Kiberstis, P. A., & Travis, J. (2006). Celebrating a glass half-full. Science, 312, 1157.CrossRefGoogle Scholar
  91. 91.
    Kim, P. M., & Tidor, B. (2003, July). Subsystem identification through dimensionality reduction of large-scale gene expression data. Genome Research, 13(7), 1706–1718.Google Scholar
  92. 92.
    Kinzler, K. W., & Vogelstein, B. (1996, October 18). Lessons from hereditary colorectal cancer. Cell, 87(2), 159–170.Google Scholar
  93. 93.
    Knudson, A. G. (1993, December 1). Antioncogenes and human cancer. Proceedings of the National Academy of Sciences of the United States of America, 90(23), 10914–10921.Google Scholar
  94. 94.
    Kolch, W. (2000). Meaningful relationships: The regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. The Biochemical Journal, 351(Pt. 2), 289–305.CrossRefGoogle Scholar
  95. 95.
    Komarova, N. L., & Wodarz, D. (2004, May 4). The optimal rate of chromosome loss for the inactivation of tumor suppressor genes in cancer. Proceedings of the National Academy of Sciences of the United States of America, 101(18), 7017–7021.Google Scholar
  96. 96.
    Kossenkov, A. V., Peterson, A. J., & Ochs, M. F. (2007). Determining transcription factor activity from microarray data using Bayesian Markov chain Monte Carlo sampling. Studies in Health Technology and Informatics, 129(Pt. 2), 1250–1254.Google Scholar
  97. 97.
    Kundu, J. K., & Surh, Y.-J. (2008, July-August). Inflammation: Gearing the journey to cancer. Mutation Research, 659(1–2), 15–30.Google Scholar
  98. 98.
    Lagasse, E. (2008, January). Cancer stem cells with genetic instability: The best vehicle with the best engine for cancer. Gene Therapy, 15(2), 136–142.Google Scholar
  99. 99.
    Lahav, G., Rosenfeld, N., Sigal, A., Geva-Zatorsky, N., Levine, A. J., Elowitz, M. B., & Alon, U. (2004, February). Dynamics of the p53-MDM2 feedback loop in individual cells. Nature Genetics, 36(2), 147–150.Google Scholar
  100. 100.
    Lamy, P., Andersen, C. L., Wikman, F. P., & Wiuf, C. (2006). Genotyping and annotation of Affymetrix SNP arrays. Nucleic Acids Research, 34(14), e100.CrossRefGoogle Scholar
  101. 101.
    Lee, D. D., & Seung, H. S. (1999, October). Learning the parts of objects by non-negative matrix factorization. Nature, 401(6755), 788–791.Google Scholar
  102. 102.
    Leek, J. T., & Storey, J. D. (2007, September). Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genetics, 3(9), 1724–1735.Google Scholar
  103. 103.
    Lewis, M. T. (2008, October). Faith, heresy and the cancer stem cell hypothesis. Future Oncology, 4(5), 585–589.Google Scholar
  104. 104.
    Li, H., Fan, X., & Houghton, J. (2007, July 1). Tumor microenvironment: The role of the tumor stroma in cancer. Journal of Cellular Biochemistry, 101(4), 805–815.Google Scholar
  105. 105.
    Li, H., Cao, Y., Petzold, L. R., & Gillespie, D. T. (2008). Algorithms and software for stochastic simulation of biochemical reacting systems. Biotechnology Progress, 24(1), 56–61.CrossRefGoogle Scholar
  106. 106.
    Lister, R., O’Malley, R. C., Tonti-Filippini, J., Gregory, B. D., Berry, C. C., Millar, A. H., & Ecker, J. R. (2008, May 2). Highly integrated single-base resolution maps of the epigenome in arabidopsis. Cell, 133(3), 523–536.Google Scholar
  107. 107.
    Liu, E. T., Kuznetsov, V. A., & Miller, L. D. (2006, April). In the pursuit of complexity: Systems medicine in cancer biology. Cancer Cell, 9(4), 245–247.Google Scholar
  108. 108.
    Liu, H. G., You, J., Pan, Y. F., Hu, X. Q., Huang, D. P., & Zhang, X. H. (2009, January 7). Cancer stem cell hierarchy. Stem Cell Reviews. 5, 174.Google Scholar
  109. 109.
    Lockhart, D. J., Dong, H., Byrne, M. C., Follettie, M. T., Gallo, M. V., Chee, M. S., Mittmann, M., Wang, C., Kobayashi, M., Horton, H., & Brown, E. L. (1996, December). Expression monitoring by hybridization to high-density oligonucleotide arrays. Nature Biotechnology, 14(13), 1675–1680.Google Scholar
  110. 110.
    Loeb, L. A., Bielas, J. H., & Beckman, R. A. (2008, May 15). Cancers exhibit a mutator phenotype: Clinical implications. Cancer Research, 68(10), 3551–3557.Google Scholar
  111. 111.
    Macdonald, F., Ford, C. H. J., & Casson, A. G. (2004). Molecular biology of cancer (2nd ed.). London: BIOS Scientific Publishers.Google Scholar
  112. 112.
    Mantovani, A. (2009, January 1). Cancer: Inflaming metastasis. Nature, 457(7225), 36–37.Google Scholar
  113. 113.
    Markevich, N. I., Moehren, G., Demin, O. V., Kiyatkin, A., Hoek, J. B., & Kholodenko, B. N. (2004, June). Signal processing at the Ras circuit: What shapes Ras activation patterns? Systems Biology, IEEE Proceedings, 1(1), 104–113.Google Scholar
  114. 114.
    Michor, F. (2008). Mathematical models of cancer stem cells. Journal of Clinical Oncology, 26, 2854–2861.CrossRefGoogle Scholar
  115. 115.
    Michor, F., Iwasa, Y., Vogelstein, B., Lengauer, C., & Nowak, M. A. (2005, Feburary). Can chromosomal instability initiate tumorigenesis? Seminars in Cancer Biology, 15(1), 43–49.Google Scholar
  116. 116.
    Mikkelsen, T. S., Hanna, J., Zhang, X., Ku, M., Wernig, M., Schorderet, P., Bernstein, B. E., Jaenisch, R., Lander, E. S., & Meissner, A. (2008, July 3). Dissecting direct reprogramming through integrative genomic analysis. Nature, 454(7200), 49–55.Google Scholar
  117. 117.
    Mirmohammadsadegh, A., Marini, A., Nambiar, S., Hassan, M., Tannapfel, A., Ruzicka, T., & Hengge, U. R. (2006, July 1). Epigenetic silencing of the PTEN gene in melanoma. Cancer Research, 66(13), 6546–6552.Google Scholar
  118. 118.
    Moloshok, T. D., Klevecz, R. R., Grant, J. D., Manion, F. J., Speier, W. F., IV., & Ochs, M. F. (2002). Application of Bayesian decomposition for analysing microarray data. Bioinformatics, 18(4), 566–575.Google Scholar
  119. 119.
    Morange, M. (2007, December 6). The field of cancer research: An indicator of present transformations in biology. Oncogene, 26(55), 7607–7610.Google Scholar
  120. 120.
    Mukherjee, S., & Speed, T. P. (2008, September 23). Network inference using informative priors. Proceedings of the National Academy of Sciences of the United States of America, 105(38), 14313–14318.Google Scholar
  121. 121.
    Nielsen, T. O., West, R. B., Linn, S. C., Alter, O., Knowling, M. A., O’Connell, J. X., Zhu, S., Fero, M., Sherlock, G., Pollack, J. R., Brown, P. O., Botstein, D., & van de Rijn, M. (2002, April 13). Molecular characterisation of soft tissue tumours: A gene expression study. Lancet, 359(9314), 1301–1307.Google Scholar
  122. 122.
    Norton, L., & Massague, J. (2006, August). Is cancer a disease of self-seeding? Nature Medicine, 12(8), 875–878.Google Scholar
  123. 123.
    Ochs, M. F., & Godwin, A. K. (2003, March). Microarrays in cancer: Research and applications. Biotechniques, (Suppl.), 34, S4–S15.Google Scholar
  124. 124.
    Ochs, M. F., Stoyanova, R. S., Arias-Mendoza, F., & Brown, T. R. (1999). A new method for spectral decomposition using a bilinear Bayesian approach. Journal of Magnetic Resonance, 137(1), 161–176.CrossRefGoogle Scholar
  125. 125.
    Ochs, M. F., Rink, L., Tarn, C., Mburu, S., Taguchi, T., Eisenberg, B., & Godwin, A. K. (2009). Detection of treatment-induced changes in signaling pathways in gastrointestinal stromal tumors using transcriptomic data. Cancer Research, 69(23). 9125–9132.CrossRefGoogle Scholar
  126. 126.
    Overall, C. M., & Lopez-Otin, C. (2002, September). Strategies for MMP inhibition in cancer: Innovations for the post-trial era. Nature Reviews. Cancer, 2(9), 657–672.Google Scholar
  127. 127.
    Paget, S. (1889). The distribution of secondary growths in cancer of the breast. Lancet, 1, 571–573.CrossRefGoogle Scholar
  128. 128.
    Papin, J. A., Hunter, T., Palsson, B. O., & Subramaniam, S. (2005, February). Reconstruction of cellular signalling networks and analysis of their properties. Nature Reviews. Molecular Cell Biology, 6(2), 99–111.Google Scholar
  129. 129.
    Parkinson, H., Kapushesky, M., Kolesnikov, N., Rustici, G., Shojatalab, M., Abeygunawardena, N., Berube, H., Dylag, M., Emam, I., Farne, A., Holloway, E., Lukk, M., Malone, J., Mani, R., Pilicheva, E., Rayner, T. F., Rezwan, F., Sharma, A., Williams, E., Bradley, X. Z., Adamusiak, T., Brandizi, M., Burdett, T., Coulson, R., Krestyaninova, M., Kurnosov, P., Maguire, E., Neogi, S. G., Rocca-Serra, P., Sansone, S.-A., Sklyar, N., Zhao, M., Sarkans, U., & Brazma, A. (2009, January). ArrayExpress update–from an archive of functional genomics experiments to the atlas of gene expression. Nucleic Acids Research, 37(Database issue), D868–D872.Google Scholar
  130. 130.
    Parsons, D. W., Jones, S., Zhang, X., Lin, J. C.-H., Leary, R. J., Angenendt, P., Mankoo, P., Carter, H., Siu, I.-M., Gallia, G. L., Olivi, A., McLendon, R., Rasheed, B. A., Keir, S., Nikolskaya, T., Nikolsky, Y., Busam, D. A., Tekleab, H., Diaz, L. A., Jr., Hartigan, J., Smith, D. R., Strausberg, R. L., Marie, S. K. N., Shinjo, S. M. O., Yan, H., Riggins, G. J., Bigner, D. D., Karchin, R., Papadopoulos, N., Parmigiani, G., Vogelstein, B., Velculescu, V. E., & Kinzler, K. W. (2008, September 26). An integrated genomic analysis of human glioblastoma multiforme. Science, 321(5897), 1807–1812.Google Scholar
  131. 131.
    Podhajcer, O. L., Benedetti, L. G., Girotti, M. R., Prada, F., Salvatierra, E., & Llera, A. S. (2008, December). The role of the matricellular protein SPARC in the dynamic interaction between the tumor and the host. Cancer Metastasis Reviews, 27(4), 691–705.Google Scholar
  132. 132.
    Quackenbush, J. (2001, June). Computational analysis of microarray data. Nature Reviews. Genetics, 2(6), 418–427.Google Scholar
  133. 133.
    Rajagopalan, H., Nowak, M. A., Vogelstein, B., & Lengauer, C. (2003, September). The significance of unstable chromosomes in colorectal cancer. Nature Reviews. Cancer, 3(9), 695–701.Google Scholar
  134. 134.
    Reya, T., Morrison, S. J., Clarke, M. F., & Weissman, I. L. (2001, November 1). Stem cells, cancer, and cancer stem cells. Nature, 414(6859), 105–111.Google Scholar
  135. 135.
    Ribba, B., Saut, O., Colin, T., Bresch, D., Grenier, E., & Boissel, J. P. (2006, December 21). A multiscale mathematical model of avascular tumor growth to investigate the therapeutic benefit of anti-invasive agents. Journal of Theoretical Biology, 243(4), 532–541.Google Scholar
  136. 136.
    Ricke, R. M., van Ree, J. H., & van Deursen, J. M. (2008, September). Whole chromosome instability and cancer: A complex relationship. Trends in Genetics, 24(9), 457–466.Google Scholar
  137. 137.
    Roberts, C. J., Nelson, B., Marton, M. J., Stoughton, R., Meyer, M. R., Bennett, H. A., He, Y. D., Dai, H., Walker, W. L., Hughes, T. R., Tyers, M., Boone, C., & Friend, S. H. (2000, February 4). Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles. Science, 287(5454), 873–880.Google Scholar
  138. 138.
    Ross, D. T., Scherf, U., Eisen, M. B., Perou, C. M., Rees, C., Spellman, P., Iyer, V., Jeffrey, S. S., Van de Rijn, M., Waltham, M., Pergamenschikov, A., Lee, J. C., Lashkari, D., Shalon, D., Myers, T. G., Weinstein, J. N., Botstein, D., & Brown, P. O. (2000, March). Systematic variation in gene expression patterns in human cancer cell lines. Nature Genetics, 24(3), 227–235.Google Scholar
  139. 139.
    Sachs, K., Perez, O., Pe’er, D., Lauffenburger, D. A., & Nolan, G. P. (2005). Causal protein-signaling networks derived from multiparameter single-cell data. Science, 308(5721), 523–529.CrossRefGoogle Scholar
  140. 140.
    Sahai, E. (2007, October). Illuminating the metastatic process. Nature Reviews. Cancer, 7(10), 737–749.Google Scholar
  141. 141.
    Sandhu, J. S. (2008, July). Prostate cancer and chronic prostatitis. Current Urology Reports, 9(4), 328–332.Google Scholar
  142. 142.
    Santos, S. D. M., Verveer, P. J., & Bastiaens, P. I. H. (2007, March). Growth factor-induced MAPK network topology shapes ERK response determining PC-12 cell fate. Nature Cell Biology, 9(3), 324–330.Google Scholar
  143. 143.
    Saul, Z. M., & Filkov, V. (2007). Exploring biological network structure using exponential random graph models. Bioinformatics, 23(19), 2604–2611.CrossRefGoogle Scholar
  144. 144.
    Sauro, H. M., & Kholodenko, B. N. (2004). Quantitative analysis of signaling networks. Progress in Biophysics and Molecular Biology, 86, 5–43.CrossRefGoogle Scholar
  145. 145.
    Schadt, E. E., Li, C., Ellis, B., & Wong, W. H. (2001). Feature extraction and normalization algorithms for high-density oligonucleotide gene expression array data. Journal of Cellular Biochemistry. Supplement, (Suppl. 37), 120–125.Google Scholar
  146. 146.
    Schena, M., Shalon, D., Davis, R. W., & Brown, P. O. (1995, October 20). Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 270(5235), 467–470.Google Scholar
  147. 147.
    Schena, M., Shalon, D., Heller, R., Chai, A., Brown, P. O., & Davis, R. W. (1996, October 1). Parallel human genome analysis: Microarray-based expression monitoring of 1,000 genes. Proceedings of the National Academy of Sciences of the United States of America, 93(20), 10614–10619.Google Scholar
  148. 148.
    Schrader, A. J., Lechner, O., Templin, M., Dittmar, K. E. J., Machtens, S., Mengel, M., Probst-Kepper, M., Franzke, A., Wollensak, T., Gatzlaff, P., Atzpodien, J., Buer, J., & Lauber, J. (2002, April 22). CXCR4/CXCL12 expression and signalling in kidney cancer. British Journal of Cancer, 86(8), 1250–1256.Google Scholar
  149. 149.
    Segal, E., Yelensky, R., & Koller, D. (2003). Genome-wide discovery of transcriptional modules from DNA sequence and gene expression. Bioinformatics, 19(Suppl. 1), i273–i282.CrossRefGoogle Scholar
  150. 150.
    Sell, S. (2007, January). Cancer and stem cell signaling: A guide to preventive and therapeutic strategies for cancer stem cells. Stem Cell Reviews, 3(1), 1–6.Google Scholar
  151. 151.
    Sharma, S. V., Bell, D. W., Settleman, J., & Haber, D. A. (2007, March). Epidermal growth factor receptor mutations in lung cancer. Nature Reviews. Cancer, 7(3), 169–181.Google Scholar
  152. 152.
    Shipitsin, M., & Polyak, K. (2008, May). The cancer stem cell hypothesis: In search of definitions, markers, and relevance. Laboratory Investigation, 88(5), 459–463.Google Scholar
  153. 153.
    Simpson, R. J., & Dorow, D. S. (2001). Cancer proteomics: From signaling networks to tumor markers. Trends in Biotechnology, 19(Suppl. 10), S40–S48.CrossRefGoogle Scholar
  154. 154.
    Singh, S. K., Clarke, I. D., Hide, T., & Dirks, P. B. (2004, September 20). Cancer stem cells in nervous system tumors. Oncogene, 23(43), 7267–7273.Google Scholar
  155. 155.
    Smith, I. M., Glazer, C. A., Mithani, S. K., Ochs, M. F., Sun, W., Bhan, S., Vostrov, A., Abdullaev, Z., Lobanenkov, V., Gray, A., Liu, C., Chang, S. S., Ostrow, K. L., Westra, W. H., Begum, S., Dhara, M., & Califano, J. (2009). Coordinated activation of candidate proto-oncogenes and cancer testes antigens via promoter demethylation in head and neck cancer and lung cancer. PLoS ONE, 4(3), e4961.CrossRefGoogle Scholar
  156. 156.
    Soria, J.-C., Lee, H.-Y., Lee, J. I., Wang, L., Issa, J.-P., Kemp, B. L., Liu, D. D., Kurie, J. M., Mao, L., & Khuri, F. R. (2002, May). Lack of PTEN expression in non-small cell lung cancer could be related to promoter methylation. Clinical Cancer Research, 8(5), 1178–1184.Google Scholar
  157. 157.
    Soukas, A., Cohen, P., Socci, N. D., & Friedman, J. M. (2000, April 15). Leptin-specific patterns of gene expression in white adipose tissue. Genes & Development, 14(8), 963–980.Google Scholar
  158. 158.
    Soukas, A., Socci, N. D., Saatkamp, B. D., Novelli, S., & Friedman, J. M. (2001, September 7). Distinct transcriptional profiles of adipogenesis in vivo and in vitro. Journal of Chemical Biology, 276(36), 34167–34174.Google Scholar
  159. 159.
    Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S., & Mesirov, J. P. (2005, October). Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences of the United States of America, 102(43), 15545–15550.Google Scholar
  160. 160.
    Tamada, Y., Kim, S., Bannai, H., Imoto, S., Tashiro, K., Kuhara, S., & Miyano, S. (2003, October). Estimating gene networks from gene expression data by combining Bayesian network model with promoter element detection. Bioinformatics, 19(Suppl. 2), ii227–ii236.Google Scholar
  161. 161.
    Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitrovsky, E., Lander, E. S., & Golub, T. R. (1999, March 16). Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation. Proceedings of the National Academy of Sciences of the United States of America, 96(6), 2907–2912.Google Scholar
  162. 162.
    Tanay, A., Sharan, R., & Shamir, R. (2002). Discovering statistically significant biclusters in gene expression data. Bioinformatics, 18(Suppl. 1), S136–S144.CrossRefGoogle Scholar
  163. 163.
    The Cancer Genome Atlas Research Network. (2008, October 23). Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 455(7216), 1061–1068.Google Scholar
  164. 164.
    Tibshirani, R., & Hastie, T. (2007). Outlier sums for differential gene expression analysis. Biostatistics, 8(1), 2–8.CrossRefzbMATHGoogle Scholar
  165. 165.
    Tozeren, A., Coward, C. W., & Petushi, S. P. (2005, March 7). Origins and evolution of cell phenotypes in breast tumors. Journal of Theoretical Biology, 233(1), 43–54.Google Scholar
  166. 166.
    van Steensel, B. (2005, June). Mapping of genetic and epigenetic regulatory networks using microarrays. Nature Genetics, 37(Suppl.), S18–S24.Google Scholar
  167. 167.
    van’t Veer, L. J., & Bernards, R. (2008). Enabling personalized cancer medicine through analysis of gene-expression patterns. Nature, 452(7187), 564–570.Google Scholar
  168. 168.
    Varambally, S., Yu, J., Laxman, B., Rhodes, D. R., Mehra, R., Tomlins, S. A., Shah, R. B., Chandran, U., Monzon, F. A., Becich, M. J., Wei, J. T., Pienta, K. J., Ghosh, D., Rubin, M. A., & Chinnaiyan, A. M. (2005, November). Integrative genomic and proteomic analysis of prostate cancer reveals signatures of metastatic progression. Cancer Cell, 8(5), 393–406.Google Scholar
  169. 169.
    Vazquez, A., Bond, E. E., Levine, A. J., & Bond, G. L. (2008, December). The genetics of the p53 pathway, apoptosis and cancer therapy. Nature Reviews. Drug Discovery, 7(12), 979–987.Google Scholar
  170. 170.
    Ventura, A. C., Jackson, T. L., & Merajver, S. D. (2009, January 15). On the role of cell signaling models in cancer research. Cancer Research, 69(2), 400–402.Google Scholar
  171. 171.
    Vezzoni, L., & Parmiani, G. (2008, September). Limitations of the cancer stem cell theory. Cytotechnology, 58(1), 3–9.Google Scholar
  172. 172.
    Visvader, J. E., & Lindeman, G. J. (2008, October). Cancer stem cells in solid tumours: Accumulating evidence and unresolved questions. Nature Reviews. Cancer, 8(10), 755–768.Google Scholar
  173. 173.
    Vogelstein, B., & Kinzler, K. W. (2004, August). Cancer genes and the pathways they control. Nature Medicine, 10(8), 789–799.Google Scholar
  174. 174.
    von Mering, C., Jensen, L. J., Kuhn, M., Chaffron, S., Doerks, T., Kruger, B., Snel, B., & Bork, P. (2007). String 7–recent developments in the integration and prediction of protein interactions. Nucleic Acids Research, 35(Database issue), D358–D362.Google Scholar
  175. 175.
    Weaver, B. A. A., & Cleveland, D. W. (2006, December). Does aneuploidy cause cancer? Current Opinion in Cell Biology, 18(6), 658–667.Google Scholar
  176. 176.
    Weinberg, R. A. (2008, June). Mechanisms of malignant progression. Carcinogenesis, 29(6), 1092–1095.Google Scholar
  177. 177.
    Werbowetski-Ogilvie, T. E., & Bhatia, M. (2008, August). Pluripotent human stem cell lines: What we can learn about cancer initiation. Trends in Molecular Medicine, 14(8), 323–332.Google Scholar
  178. 178.
    Werhli, A. V., & Husmeier, D. (2007). Reconstructing gene regulatory networks with Bayesian networks by combining expression data with multiple sources of prior knowledge. Statistical Applications in Genetics and Molecular Biology, 6, Article15.Google Scholar
  179. 179.
    Xing, Y., Kapur, K., & Wong, W. H. (2006). Probe selection and expression index computation of Affymetrix exon arrays. PLoS ONE, 1, e88.CrossRefGoogle Scholar
  180. 180.
    Zakharkin, S. O., Kim, K., Mehta, T., Chen, L., Barnes, S., Scheirer, K. E., Parrish, R. S., Allison, D. B., & Page, G. P. (2005). Sources of variation in Affymetrix microarray experiments. BMC Bioinformatics, 6, 214.CrossRefGoogle Scholar
  181. 181.
    Zhao, H., Ramos, C. F., Brooks, J. D., & Peehl, D. M. (2007, January). Distinctive gene expression of prostatic stromal cells cultured from diseased versus normal tissues. Journal of Cellular Physiology, 210(1), 111–121.Google Scholar
  182. 182.
    Zhou, X. J., Kao, M.-C. J., Huang, H., Wong, A., Nunez-Iglesias, J., Primig, M., Aparicio, O. M., Finch, C. E., Morgan, T. E., & Wong, W. H. (2005, February). Functional annotation and network reconstruction through cross-platform integration of microarray data. Nature Biotechnology, 23(2), 238–243.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Elana J. Fertig
    • 1
  • Ludmila V. Danilova
    • 1
  • Michael F. Ochs
    • 1
  1. 1.Division of Oncology Biostatistics and BioinformaticsJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations