Advertisement

Differential-Multiple Linear Cryptanalysis

  • Zhiqiang Liu
  • Dawu Gu
  • Jing Zhang
  • Wei Li
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6151)

Abstract

Differential-linear cryptanalysis was introduced by Langford et al in 1994. After that, Biham et al proposed an enhanced differential-linear cryptanalysis in 2002. In this paper, we present an extension to the enhanced differential-linear cryptanalysis, called differential-multiple linear cryptanalysis, in which a differential characteristic can be concatenated with multiple linear characteristics to derive a differential-multiple linear distinguisher. Furthermore, we introduce a technique about how to find a differential-multiple linear distinguisher based on a differential-linear distinguisher for Feistel and SPN block ciphers. For illustration, this extension is applied to describe a differential-multiple linear distinguisher for 7-round DES, and then the best-known key recovery attack on 9-round DES is presented based on the differential-multiple linear distinguisher. As a matter of fact, our work is a new attempt to concatenate a differential characteristic with multiple linear characteristics to derive a new cryptanalytic tool which may be helpful to analyze a variety of block ciphers including Feistel and SPN schemes.

Keywords

Differential cryptanalysis Multiple linear cryptanalysis Differential-Linear cryptanalysis Differential-Multiple linear cryptanalysis DES 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Biham, E., Biryukov, A., Shamir, A.: Miss in the middle attacks on IDEA and Khufu. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 124–138. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  2. 2.
    Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack reduced to 31 rounds using impossible differentials. Journal of Cryptology 18(4), 291–311 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Biham, E., Dunkelman, O., Keller, N.: The rectangle attack - rectangling the Serpent. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 340–357. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Biham, E., Dunkelman, O., Keller, N.: Enhancing differential-linear cryptanalysis. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 254–266. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21. Springer, Heidelberg (1991)Google Scholar
  6. 6.
    Biham, E., Shamir, A.: Differential cryptanalysis of the Data Encryption Standard. Springer, Heidelberg (1993)zbMATHGoogle Scholar
  7. 7.
    Biryukov, A., De Cannière, C., Quisquater, M.: On multiple linear approximations. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 1–22. Springer, Heidelberg (2004)Google Scholar
  8. 8.
    Borst, J., Knudsen, L.R., Rijmen, V.: Two attacks on reduced IDEA. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 1–13. Springer, Heidelberg (1997)Google Scholar
  9. 9.
    Hawkes, P.: Differential-linear weak key classes of IDEA. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 112–126. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  10. 10.
    Kaliski, B.S., Robshaw, M.J.B.: Linear cryptanalysis using multiple approximations. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 26–39. Springer, Heidelberg (1994)Google Scholar
  11. 11.
    Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995)Google Scholar
  12. 12.
    Langford, S.K., Hellman, M.E.: Differential-linear cryptanalysis. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 17–25. Springer, Heidelberg (1994)Google Scholar
  13. 13.
    Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)Google Scholar
  14. 14.
    Selçuk, A.A.: On probability of success in linear and differential cryptanalysis. Journal of Cryptology 21(1), 131–147 (2008)CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    Wagner, D.: The boomerang attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 156–170. Springer, Heidelberg (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Zhiqiang Liu
    • 1
  • Dawu Gu
    • 1
  • Jing Zhang
    • 1
  • Wei Li
    • 2
  1. 1.Department of Computer Science and EngineeringShanghai Jiao Tong UniversityShanghaiP.R. China
  2. 2.School of Computer Science and TechnologyDonghua UniversityShanghaiP.R.China

Personalised recommendations