Advertisement

Algebraic Side-Channel Attacks

  • Mathieu Renauld
  • François-Xavier Standaert
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6151)

Abstract

In 2002, algebraic attacks using overdefined systems of equations have been proposed as a potentially very powerful cryptanalysis technique against block ciphers. However, although a number of convincing experiments have been performed against certain reduced algorithms, it is not clear whether these attacks can be successfully applied in general and to a large class of ciphers. In this paper, we show that algebraic techniques can be combined with side-channel attacks in a very effective and natural fashion. As an illustration, we apply them to the block cipher PRESENT that is a stimulating first target, due to its simple algebraic structure. The proposed attacks have a number of interesting features: (1) they exploit the information leakages of all the cipher rounds, (2) in common implementation contexts (e.g. assuming a Hamming weight leakage model), they recover the block cipher keys after the observation of a single encryption, (3) these attacks can succeed in an unknown-plaintext/ciphertext adversarial scenario and (4) they directly defeat countermeasures such as boolean masking. Eventually, we argue that algebraic side-channel attacks can take advantage of any kind of physical leakage, leading to a new tradeoff between the robustness and informativeness of the side-channel information extraction.

Keywords

Block Cipher Conjunctive Normal Form Algebraic Attack Collision Attack Leakage Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bard, G., Courtois, N., Jefferson, C.: Efficient Methods for Conversion and Solution of Sparse Systems of Low-Degree Multivariate Polynomials over GF(2) via SAT-Solvers. In: Cryptology ePrint Archive, Report 2007/024 (2007)Google Scholar
  2. 2.
    Biryukov, A., De Cannière, C.: Block Ciphers and Systems of Quadratic Equations. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 274–289. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Biryukov, A., Khovratovich, D.: Two New Techniques of Side-Channel Cryptanalysis. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 195–208. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Bogdanov, A., Knudsen, L., Leander, G., Paar, C., Poschmann, A., Robshaw, M., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Bogdanov, A.: Improved Side-Channel Collision Attacks on AES. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 84–95. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Bogdanov, A., Kizhvatov, I., Pyshkin, A.: Algebraic Methods in Side-Channel Collision Attacks and Practical Collision Detection. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 251–265. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Carlier, V., Chabanne, H., Dottax, E., Pelletier, H.: Generalizing Square Attack using Side-Channels of an AES Implementation on an FPGA. In: The Proceedings of FPL 2005, Tampere, Finland, pp. 433–437 (August 2005)Google Scholar
  8. 8.
  9. 9.
    Chari, S., Rao, J., Rohatgi, P.: Template Attacks. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Courtois, N., Pieprzyk, J.: Cryptanalysis of Block Ciphers with Overdefined Systems of Equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 267–287. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Courtois, N., Bard, G.: Algebraic Cryptanalysis of the Data Encryption Standard. In: Galbraith, S.D. (ed.) Cryptography and Coding 2007. LNCS, vol. 4887, pp. 152–169. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Goubin, L., Patarin, J.: DES and Differential Power Analysis. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  13. 13.
    Handschuh, H., Preneel, B.: Blind Differential Cryptanalysis for Enhanced Power Attacks. In: Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 163–173. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999)Google Scholar
  15. 15.
    Ledig, H., Muller, F., Valette, F.: Enhancing Collision Attacks. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 176–190. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Mangard, S.: A Simple Power Analysis (SPA) Attack on Implementations of the AES Key Expansion. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 343–358. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  18. 18.
    Mitchell, D.: A SAT Solver Primer. In: The Proceedings of EATCS Bulletin, The Logic in Computer Science Column, vol. 85, pp. 112–133 (2005)Google Scholar
  19. 19.
    Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an Efficient SAT Solver. In: The Proceedings of DAC 2001, Las Vegas (June 2001)Google Scholar
  20. 20.
    Petit, C., Standaert, F.-X., Pereira, O., Malkin, T.G., Yung, M.: A Block Cipher based PRNG Secure Against Side-Channel Key Recovery. In: The Proceedings of ASIACCS 2008, Tokyo, Japan, pp. 56–65 (March 2008)Google Scholar
  21. 21.
    Pietrzak, K.: A Leakage-Resilient Mode of Operation. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 462–482. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  22. 22.
    Prouff, E., Rivain, M.: A Generic Method for Secure S-box Implementation. In: Kim, S., Yung, M., Lee, H.-W. (eds.) WISA 2007. LNCS, vol. 4867, pp. 227–244. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  23. 23.
    Renauld, M., Standaert, F.-X., Veyrat-Charvillon, N.: Algerbaic Side-Channel Attacks on the AES: Why Time also Matters in DPA. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 97–111. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  24. 24.
    SAT 2004 competition main page, http://www.lri.fr/~simon/contest04/results/
  25. 25.
    Schindler, W., Lemke, K., Paar, C.: A Stochastic Model for Differential Side-Channel Cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 30–46. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  26. 26.
    Schramm, K., Wollinger, T.J., Paar, C.: A New Class of Collision Attacks and Its Application to DES. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 206–222. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  27. 27.
    Schramm, K., Leander, G., Felke, P., Paar, C.: A Collision-Attack on AES: Combining Side Channel and Differential Attack. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 163–175. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  28. 28.
    Standaert, F.-X., Malkin, T.G., Yung, M.: A Unified Framework for the Analysis of Side-Channel Key Recovery Attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  29. 29.
    Standaert, F.-X., Archambeau, C.: Using Subspace-Based Template Attacks to Compare and Combine Power and Electromagnetic Information Leakages. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 411–425. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Mathieu Renauld
    • 1
  • François-Xavier Standaert
    • 1
  1. 1.UCL Crypto GroupUniversité catholique de LouvainBelgium

Personalised recommendations