Gemstone: A New Stream Cipher Using Coupled Map Lattice

  • Ruming Yin
  • Jian Yuan
  • Qiuhua Yang
  • Xiuming Shan
  • Xiqin Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6151)


In this paper, we propose a new stream cipher Gemstone by discretizing coupled map lattices (CML), which is a nonlinear system of coupled chaotic maps. Gemstone uses a 128-bit key and a 64-bit initialization vector (IV). We show that there is no high probability difference propagations or high correlations over the IV setup scheme. Thus the IV setup of Gemstone is very secure. We also verify that the largest linear correlations between consecutive key streams are below the safe bounds. Gemstone is slightly slower than AES-CTR, but its initialization speeds are higher than some finalists of eSTREAM.


Stream cipher coupled map lattice confusion and diffusion differential cryptanalysis linear cryptanalysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Masuda, N., Jakimoski, G., Aihara, K., Kocarev, L.: Chaotic Block Ciphers: From Theory to Practical Algorithms. IEEE Transactions on Circuits and Systems – I: Fundamental Theory and Applications 53(6), 1341–1352 (2006)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Schneier, B.: Applied Cryptography – Protocols, Algorithms, and Source Code in C, 2nd edn. John Wiley & Sons, Chichester (1996)zbMATHGoogle Scholar
  3. 3.
    Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21. Springer, Heidelberg (1991)Google Scholar
  4. 4.
    Heys, H.M.: A Tutorial on Linear and Differential analysis,
  5. 5.
    Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)Google Scholar
  6. 6.
    Daemen, J., Govaerts, R., Vandewalle, J.: Correlation matrices. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 275–285. Springer, Heidelberg (1995)Google Scholar
  7. 7.
    Rosen, K.H.: Elementary Number Theory and its Applications, 5th edn. Addison-Wesley, Reading (2005)Google Scholar
  8. 8.
    Shamir, A., Tsaban, B.: Guaranteeing the Diversity of Number Generators. Information and Computation 171(2), 350–363 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Menezes, A., Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography. CRC Press LLC, Boca Raton (1997)zbMATHGoogle Scholar
  10. 10.
    Daemen, J., Rijmen, V.: The Wide Trail Design Strategy. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 222–238. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Joux, A., Muller, F.: A Chosen IV Attack Against Turing. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 194–207. Springer, Heidelberg (2004)Google Scholar
  12. 12.
    Berbain, C., Gilbert, H.: On the Security of IV Dependent Stream Ciphers. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 254–273. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Englund, H., Johansson, T., Turan, M.S.: A Framework for Chosen IV Statistical Analysis of Stream Ciphers. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 268–281. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Canniere, C.D., Preneel, B.: Trivium. In: Robshaw, M.J.B., Billet, O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 244–266. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Boesgaard, M., Vesterager, M., Pedersen, T., et al.: Rabbit: A New High-Performance Stream Cipher. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 307–329. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Rukhin, A., Soto, J., Nechvatal, J., et al.: A statistical test suite for random and pseudorandom number generators for cryptographic applications (2001),
  17. 17.
    Marsaglia, G.: DIEHARD Statistical Tests,
  18. 18.
    Turan, M.S., Doganaksoy, A., Calik, C.: Statistical Analysis of Synchronous Stream Ciphers. In: eSTREAM, ECRYPT Stream Cipher Project, Report 2006/012 (2006)Google Scholar
  19. 19.
    Wang, S., Kuang, J., Li, J., et al.: Chaos-based secure communications in a large community. Physical Review E 66(6), 065202(1-4) (2002)Google Scholar
  20. 20.
    Lu, H., Wang, S., Li, X., et al.: A new spatiotemporally chaotic cryptosystem and its security and performance analyses. Chaos 14(3), 617–629 (2004)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Li, P., Li, Z., Halang, W.A., Chen, G.: A stream cipher based on a spatiotemporal chaotic system. Chaos Solitons Fractals 32(5), 1867–1876 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Robshaw, M.: The eSTREAM Project. In: Robshaw, M.J.B., Billet, O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 1–6. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  23. 23.
    Johansson, T.: Analysis and Design of Modern Stream Ciphers. In: Paterson, K.G. (ed.) Cryptography and Coding 2003. LNCS, vol. 2898, p. 66. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  24. 24.
    Scholl, E., Schuster, H.G.: Handbook of chaos control. Wiley-VCH, New York (2008)Google Scholar
  25. 25.
    Canniere, C.D.: eSTREAM Software Performance. In: Robshaw, M.J.B., Billet, O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 119–139. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  26. 26.
    Yin, R., Yuan, J., Yang, Q., et al.: Linear cryptanalysis for a chaos-based stream cipher. In: International Conference on Communications, Information and Network Security 2009 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ruming Yin
    • 1
  • Jian Yuan
    • 1
  • Qiuhua Yang
    • 1
  • Xiuming Shan
    • 1
  • Xiqin Wang
    • 1
  1. 1.Department of Electronic EngineeringTsinghua UniversityBeijingChina

Personalised recommendations