Skip to main content

Communication Efficient Statistical Asynchronous Multiparty Computation with Optimal Resilience

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 6151))

Abstract

We propose an efficient statistically secure asynchronous multiparty computation (AMPC) protocol with optimal fault tolerance; i.e., with n = 3t + 1, where n is the total number of parties and t is the number of parties that can be under the influence of a Byzantine (active) adversary \({\cal A}_t\) having unbounded computing power. Our protocol privately communicates \({\cal O}(n^5 \kappa)\) bits per multiplication gate and involves a negligible error probability of 2 − Ω(κ), where κ is the error parameter. As far as our knowledge is concerned, the only known statistically secure AMPC protocol with n = 3t + 1 is due to [7], which privately communicates Ω(n 11 κ 4) bits and A-casts Ω(n 11 κ 2 log(n)) bits per multiplication gate. Here A-cast is an asynchronous broadcast primitive, which allows a party to send some information to all other parties identically. Thus our AMPC protocol shows significant improvement in communication complexity over the AMPC protocol of [7].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg (1992)

    Google Scholar 

  2. Beerliová-Trubíniová, Z., Hirt, M.: Efficient multi-party computation with dispute control. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 305–328. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Beerliová-Trubíniová, Z., Hirt, M.: Simple and efficient perfectly-secure asynchronous mpc. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 376–392. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Beerliová-Trubíniová, Z., Hirt, M.: Perfectly-secure MPC with linear communication complexity. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 213–230. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Ben-Or, M., Canetti, R., Goldreich, O.: Asynchronous secure computation. In: STOC, pp. 52–61 (1993)

    Google Scholar 

  6. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: STOC, pp. 1–10 (1988)

    Google Scholar 

  7. Ben-Or, M., Kelmer, B., Rabin, T.: Asynchronous secure computations with optimal resilience. In: PODC, pp. 183–192 (1994)

    Google Scholar 

  8. Bracha, G.: An asynchronous \(\lfloor (n - 1) / 3 \rfloor\)-resilient consensus protocol. In: PODC, pp. 154–162 (1984)

    Google Scholar 

  9. Canetti, R.: Studies in Secure Multiparty Computation and Applications. PhD thesis, Weizmann Institute, Israel (1995)

    Google Scholar 

  10. Canetti, R., Rabin, T.: Fast asynchronous Byzantine Agreement with optimal resilience. In: STOC, pp. 42–51 (1993)

    Google Scholar 

  11. Chaum, D., Crpeau, C., Damgård, I.: Multiparty unconditionally secure protocols. In: STOC, pp. 11–19 (1988)

    Google Scholar 

  12. Cramer, R., Damgård, I.: Multiparty Computation, an Introduction. In: Contemporary Cryptography. Birkhuser, Basel (2005)

    Google Scholar 

  13. Cramer, R., Damgård, I., Dziembowski, S., Hirt, M., Rabin, T.: Efficient multiparty computations secure against an adaptive adversary. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 311–326. Springer, Heidelberg (1999)

    Google Scholar 

  14. Damgård, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty computation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 572–590. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Gennaro, R., Rabin, M.O., Rabin, T.: Simplified VSS and fact-track multiparty computations with applications to threshold cryptography. In: PODC, pp. 101–111 (1998)

    Google Scholar 

  16. Patra, A., Choudhary, A., Pandu Rangan, C.: Efficient statistical asynchronous verifiable secret sharing and multiparty computation with optimal resilience. In: Cryptology ePrint Archive, Report 2009/492. A preliminary version of this paper got accepted in ICITS 2009 (2009)

    Google Scholar 

  17. Patra, A., Choudhary, A., Pandu Rangan, C.: Simple and efficient asynchronous Byzantine Agreement with optimal resilience. In: Cryptology ePrint Archive, Report 2008/424. Also appeared in Proc. of PODC (2009)

    Google Scholar 

  18. Rabin, T.: Robust sharing of secrets when the dealer is honest or cheating. J. ACM 41(6), 1089–1109 (1994)

    Article  MathSciNet  Google Scholar 

  19. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority. In: STOC, pp. 73–85 (1989)

    Google Scholar 

  20. Yao, A.C.: Protocols for secure computations. In: FOCS, pp. 160–164 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Patra, A., Choudhary, A., Rangan, C.P. (2010). Communication Efficient Statistical Asynchronous Multiparty Computation with Optimal Resilience. In: Bao, F., Yung, M., Lin, D., Jing, J. (eds) Information Security and Cryptology. Inscrypt 2009. Lecture Notes in Computer Science, vol 6151. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16342-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16342-5_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16341-8

  • Online ISBN: 978-3-642-16342-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics