Advertisement

Efficient Password-Based Authenticated Key Exchange Protocol in the UC Framework

  • Xuexian Hu
  • Wenfen Liu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6151)

Abstract

In this paper, we propose a new password-based authenticated key exchange (PAKE) protocol and prove its security within the universal composability (UC) framework. The security proof of this protocol is based on standard number-theoretic assumptions, i.e., without random oracle or ideal cipher assumption. Comparisons show that, our protocol is more efficient than Canetti et al.’s protocol, which is the most efficient two party PAKE protocol proven secure in the UC framework and based on standard number-theoretic assumptions. More specifically, our protocol saves 1 round of communication and 5 modular exponentiations when the underlying cryptosystem is instantiated with Cramer-Shoup public key cryptosystem. Moreover, our protocol avoids the usage of the one-time signature, which saves the bandwidth for transmitting the message and saves the computation for signature and verification.

Keywords

Hash Function Random Oracle Mutual Authentication Hash Family Dictionary Attack 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdalla, M., Catalano, D., Chevalier, C., Pointcheval, D.: Efficient two-party password-based key exchange protocols in the UC framework. In: Malkin, T.G. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 335–351. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Abadalla, M., Fouque, P., Pointcheval, D.: Password-based authenticated key exchange in the three-party setting. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 65–84. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure against dictionary attack. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 139–155. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Boyko, V., MacKenzie, P., Patel, S.: Provably secure password-authenticated key exchange using Diffie-Hellman. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 156–171. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Bresson, E., Chevassut, O., Pointcheval, D.: Security proofs for an efficient password-based key exchange. In: Proc. of the 10th ACM Conference on Computer and Communications Security, pp. 241–250 (2003)Google Scholar
  6. 6.
    Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: Proc. of 42nd IEEE Symposium on Foundations of Computer Science, pp. 136–145 (2001)Google Scholar
  7. 7.
    Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.: Universally composable password-based key exchange. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 404–421. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Canetti, R., Rabin, T.: Universal composition with joint state. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 265–281. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Carter, J.L., Wegman, M.N.: Universal classes of hash functions. Journal of Computer and System Sciences (18), 143–154 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Cramer, R., Shoup, V.: A practical public-key cryptosystem secure against adaptive chosen ciphertexts attacks. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)Google Scholar
  11. 11.
    Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography. SIAM Journal of Computing 30(2), 391–437 (1999)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Even, S., Goldreich, O., Micali, S.: On-line/off-line digital signature. Journal of Gryptography (9), 35–67 (1996)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Garay, J., MacKenzie, P., Yang, K.: Strengthening zero-knowledge protocols using signatures. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 177–194. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Gennaro, R.: Faster and shorter password-authenticated key exchange. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 589–606. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Gennaro, R., Lindell, Y.: A framework for password-based authenticated key exchange. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 524–543. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Hastad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM Journal on Computing 28(4), 1364–1396 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Jiang, S., Gong, G.: Password based key exchange with mutual authentication. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 267–279. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Katz, J., Ostrovsky, R., Yung, M.: Efficient password based authenticated key exchange using human memorable passwords. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 475–494. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Xuexian Hu
    • 1
  • Wenfen Liu
    • 1
  1. 1.Zhengzhou Information Science and Technology InstituteZhengzhouP. R. China

Personalised recommendations