Advertisement

Integral Cryptanalysis of ARIA

  • Ping Li
  • Bing Sun
  • Chao Li
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6151)

Abstract

This paper studies the security of the block cipher ARIA against integral attack. The designers believe that determining whether any given byte position is balanced or not after 3 rounds of encryption is not possible. However, by determining the times that each element of the output of the second round appears is an even integer, we find some 3-round integral distinguishers of ARIA in this paper, which may lead to possible attacks on 4, 5 and 6-round ARIA. Both the data and time complexities of 4-round attack are 225; the data and time complexities of 5-round attack are 227.2 and 276.7, respectively; the data and time complexities of 6-round attack are 2124.4 and 2172.4, respectively. Moreover, the 4 and 5-round attacks have the lowest data and time complexities compared to existing attacks on ARIA. Our results also show that the choice of S-box and different order of S-boxes do have influence on integral attacks.

Keywords

block cipher ARIA integral cryptanalysis counting method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kwon, D., Kim, J., Park, S., Sung, S.H., et al.: New Block Cipher: ARIA. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 432–445. Springer, Heidelberg (2004)Google Scholar
  2. 2.
    Koo, B.W., Jang, H.S., Song, J.H.: Constructing and Cryptanalysis of a 16 ×16 Binary Matrix as a Diffusion Layer. In: Chae, K.-J., Yung, M. (eds.) WISA 2003. LNCS, vol. 2908, pp. 489–503. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Biryukov, A., De Canniere, C., Lano, J., Ors, S.B., Preneel, B.: Security and Performance Analysis of Aria. Version 1.2., January 7 (2004)Google Scholar
  4. 4.
    National Security Research Institute, Korea. Specification of ARIA. Version 1.0. (January 2005)Google Scholar
  5. 5.
    Wu, W., Zhang, W., Feng, D.: Impossible differential cryptanalysis of Reduced-Round ARIA and Camellia. Journal of Compute Science and Technology 22(3), 449–456 (2007)CrossRefGoogle Scholar
  6. 6.
    Li, R., Sun, B., Zhang, P., Li, C.: New Impossible Differentials of ARIA. Cryptology ePrint Archive, Report 2008/227 (2008), http://eprint.iacr.org/
  7. 7.
    Fleischmann, E., Gorski, M., Lucks, S.: Attacking Reduced Rounds of the ARIA Block Cipher. To appear in WEWoRC 2009 (2009); Cryptology ePrint Archive, Report 2009/334, http://eprint.iacr.org/
  8. 8.
    Daemen, J., Knudsen, L.R., Rijmen, V.: The Block Cipher Square. In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  9. 9.
    Lucks, S.: The Saturation Attack — A Bait for Twofish. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 1–15. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Biryukov, A., Shamir, A.: Structural Cryptanalysis of SASAS. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 394–405. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Knudsen, L.R., Wagner, D.: Integral Cryptanalysis. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Z’aba, M.R., Raddum, H., Henricksen, M., Dawson, E.: Bit-Pattern Based Integral Attack. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 363–381. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Sun, B., Qu, L., Li, C.: New Cryptanalysis of Block Ciphers with Low Algebraic Degree. In: Dunkelman, O. (ed.) Fast Software Encryption. LNCS, vol. 5665, pp. 180–192. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Sun, B., Li, R., Li, C.: SQUARE attack on Block Ciphers with Low Algebraic Degree. To appear in Science in China, Ser. F-Inf. Sci.Google Scholar
  15. 15.
    Hatano, Y., Sekine, H., Kaneko, T.: Higher Order Differential Attack of Camellia (II). In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 129–146. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Daemen, J., Rijmen, V.: The Design of Rijndael: AES — The Advanced Encryption Standard, Information Security and Cryptography. Springer, Heidelberg (2002)Google Scholar
  17. 17.
    Ferguson, N., Kelsey, J., Lucks, S., Schneier, B., Stay, M., Wagner, D., Whiting, D.: Improved Cryptanalysis of Rijndael. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 213–230. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ping Li
    • 1
  • Bing Sun
    • 1
  • Chao Li
    • 1
    • 2
  1. 1.Department of Mathematics and System ScienceScience College of National University of Defense TechnologyChangshaChina
  2. 2.State Key Laboratory of Information SecurityGraduate University of Chinese Academy of SciencesChina

Personalised recommendations