Security System Technologies Applied to Ambient Assisted Living

  • Juan J. Villacorta
  • Lara del Val
  • Ma Isabel Jimenez
  • Alberto Izquierdo
Part of the Communications in Computer and Information Science book series (CCIS, volume 111)

Abstract

The increasing elderly population has increased interest in the Ambient Assisted Living systems. This article presents a system for monitoring the disabled or elderly developed from an existing surveillance system. The modularity and adaptability characteristics of the system allow an easy adaptation for a different purpose. The proposed system uses a network of sensors capable of motion detection that includes fall warning, identification of persons and a configurable control system which allows its use in different scenarios.

Keywords

Disabled people elderly Ambient Assisted Living sensor network 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    The Ambient Assited Living (AAL) Joint Programme, http://www.aal-europe.eu/
  2. 2.
    Kleinberger, T., Becker, M., Ras, E., Holzinger, A., Müller, P.: Ambient Intelligence in Assisted Living: Enable Elderly People to Handle Future Interfaces. In: Stephanidis, C. (ed.) UAHCI 2007 (Part II). LNCS, vol. 4555, pp. 103–112. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    de Jesus, J.D., Calvo, J.J.V., Fuente, A.I.: Surveillance system based on data fusion from image and acoustic array sensors. IEEE, Aerospace and Electronic Systems Magazine 15(2), 9–16 (2000)CrossRefGoogle Scholar
  4. 4.
    Hou, J.C., et al.: PAS: A Wireless-Enabled, Sensor-Integrated Personal Assistance System for Independent and Assisted Living. In: 2007 Joint Workshop on High Confidence Medical Devices, Software, and Systems and Medical Device Plug-and-Play Interoperability pp.64–75 (2007)Google Scholar
  5. 5.
    Rao, S., Cook, D.J.: Predicting Inhabitant Actions Using Action and Task Models with Application to Smart Homes. International Journal of Artificial Intelligence Tools 13(1), 81–100 (2004)CrossRefGoogle Scholar
  6. 6.
    Strobel, N., Spors, S., Rabenstein, R.: Joint audio-video signal processing for object localization and tracking. In: Brandstein, M.S., Ward, D.B. (eds.) Microphone Arrays: Signal Processing Techniques and Applications, pp. 203–225. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Van Veen, B., Buckley, K.: Beamforming: A versatile approach to spatial filtering. IEEE ASSP Magazine, 4–24 (1988)Google Scholar
  8. 8.
    Noury, N., et al.: Fall detection - Principles and Methods., Engineering in Medicine and Biology Society. In: 29th Annual International Conference of the IEEE, pp. 1663–1666 (22-26, 2007)Google Scholar
  9. 9.
    Cucchiara, R., Grana, C., Piccardi, M., Prati, A.: Detecting moving objects, ghosts, and shadows in video streams. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(10), 1337–1342 (2003)CrossRefGoogle Scholar
  10. 10.
    Miaou, S.-G., Sung, P.H., Huang, C.Y.: A Customized Human Fall Detection System Using Omni-Camera Images and Personal Information. In: 1st Transdisciplinary Conference on Distributed Diagnosis and Home Healthcare, D2H2, pp. 39–42 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Juan J. Villacorta
    • 1
  • Lara del Val
    • 1
  • Ma Isabel Jimenez
    • 1
  • Alberto Izquierdo
    • 1
  1. 1.E.T.S.I. TelecomunicaciónUniversidad de ValladolidValladolidSpain

Personalised recommendations